当前位置:网站首页>Faster-ILOD、maskrcnn_benchmark训练coco数据集及问题汇总
Faster-ILOD、maskrcnn_benchmark训练coco数据集及问题汇总
2022-07-02 06:26:00 【chenf0】
loading annotations into memory...
Done (t=18.25s)
creating index...
index created!
number of images used for training: 31235
2022-06-05 03:17:10,191 maskrcnn_benchmark.trainer INFO: Start training
/data3/cf/papercpde/maskrcnn-benchmark/maskrcnn_benchmark/structures/segmentation_mask.py:422: UserWarning: This overload of nonzero is deprecated:
nonzero()
Consider using one of the following signatures instead:
nonzero(*, bool as_tuple) (Triggered internally at /pytorch/torch/csrc/utils/python_arg_parser.cpp:766.)
item = item.nonzero()
/home/earhian/anaconda3/envs/maskrcnn/lib/python3.7/site-packages/torch/optim/lr_scheduler.py:123: UserWarning: Detected call of `lr_scheduler.step()` before `optimizer.step()`. In PyTorch 1.1.0 and later, you should call them in the opposite order: `optimizer.step()` before `lr_scheduler.step()`. Failure to do this will result in PyTorch skipping the first value of the learning rate schedule. See more details at https://pytorch.org/docs/stable/optim.html#how-to-adjust-learning-rate
"https://pytorch.org/docs/stable/optim.html#how-to-adjust-learning-rate", UserWarning)
/pytorch/aten/src/THCUNN/ClassNLLCriterion.cu:108: cunn_ClassNLLCriterion_updateOutput_kernel: block: [0,0,0], thread: [1,0,0] Assertion `t >= 0 && t < n_classes` failed.
/pytorch/aten/src/THCUNN/ClassNLLCriterion.cu:108: cunn_ClassNLLCriterion_updateOutput_kernel: block: [0,0,0], thread: [15,0,0] Assertion `t >= 0 && t < n_classes` failed.
/pytorch/aten/src/THCUNN/ClassNLLCriterion.cu:108: cunn_ClassNLLCriterion_updateOutput_kernel: block: [0,0,0], thread: [17,0,0] Assertion `t >= 0 && t < n_classes` failed.
/pytorch/aten/src/THCUNN/ClassNLLCriterion.cu:108: cunn_ClassNLLCriterion_updateOutput_kernel: block: [0,0,0], thread: [23,0,0] Assertion `t >= 0 && t < n_classes` failed.
Traceback (most recent call last):
File "tools/train_first_step.py", line 232, in <module>
main()
File "tools/train_first_step.py", line 224, in main
model = train(cfg, args.local_rank, args.distributed)
File "tools/train_first_step.py", line 103, in train
arguments,
File "/data3/cf/papercpde/maskrcnn-benchmark/maskrcnn_benchmark/engine/trainer.py", line 70, in do_train
loss_dict,_,_,_,_ = model(images, targets)
File "/home/earhian/anaconda3/envs/maskrcnn/lib/python3.7/site-packages/torch/nn/modules/module.py", line 722, in _call_impl
result = self.forward(*input, **kwargs)
File "/home/earhian/anaconda3/envs/maskrcnn/lib/python3.7/site-packages/apex-0.1-py3.7-linux-x86_64.egg/apex/amp/_initialize.py", line 197, in new_fwd
**applier(kwargs, input_caster))
File "/data3/cf/papercpde/maskrcnn-benchmark/maskrcnn_benchmark/modeling/detector/generalized_rcnn.py", line 67, in forward
x, result, detector_losses = self.roi_heads(features, proposals, targets)
File "/home/earhian/anaconda3/envs/maskrcnn/lib/python3.7/site-packages/torch/nn/modules/module.py", line 722, in _call_impl
result = self.forward(*input, **kwargs)
File "/data3/cf/papercpde/maskrcnn-benchmark/maskrcnn_benchmark/modeling/roi_heads/roi_heads.py", line 27, in forward
x, detections, loss_box = self.box(features, proposals, targets)
File "/home/earhian/anaconda3/envs/maskrcnn/lib/python3.7/site-packages/torch/nn/modules/module.py", line 722, in _call_impl
result = self.forward(*input, **kwargs)
File "/data3/cf/papercpde/maskrcnn-benchmark/maskrcnn_benchmark/modeling/roi_heads/box_head/box_head.py", line 55, in forward
loss_classifier, loss_box_reg = self.loss_evaluator([class_logits], [box_regression])
File "/data3/cf/papercpde/maskrcnn-benchmark/maskrcnn_benchmark/modeling/roi_heads/box_head/loss.py", line 151, in __call__
sampled_pos_inds_subset = torch.nonzero(labels > 0).squeeze(1)
RuntimeError: copy_if failed to synchronize: cudaErrorAssert: device-side assert triggered
原因是我训练的数据集是70,coco一共80类
coco.py中写的很清楚,之前没看哈哈,当训练基础类别为70时,first 70 categories对应1 ~ 79。将num_classes改成81即可成功运行
# first 40 categories: 1 ~ 44; first 70 categories: 1 ~ 79; first 75 categories: 1 ~ 85
# second 40 categories: 45 ~ 91; second 10 categories: 80 ~ 91; second 5 categories: 86 ~ 91
# totally 80 categories
边栏推荐
- Message queue fnd in Oracle EBS_ msg_ pub、fnd_ Application of message in pl/sql
- Oracle 11g uses ords+pljson to implement JSON_ Table effect
- Pratique et réflexion sur l'entrepôt de données hors ligne et le développement Bi
- Drawing mechanism of view (I)
- 优化方法:常用数学符号的含义
- 【BERT,GPT+KG调研】Pretrain model融合knowledge的论文集锦
- [tricks] whiteningbert: an easy unsupervised sentence embedding approach
- Oracle general ledger balance table GL for foreign currency bookkeeping_ Balance change (Part 1)
- One field in thinkphp5 corresponds to multiple fuzzy queries
- MapReduce concepts and cases (Shang Silicon Valley Learning Notes)
猜你喜欢
[paper introduction] r-drop: regulated dropout for neural networks
基于pytorch的YOLOv5单张图片检测实现
Three principles of architecture design
常见CNN网络创新点
Drawing mechanism of view (I)
[introduction to information retrieval] Chapter 1 Boolean retrieval
Implementation of purchase, sales and inventory system with ssm+mysql
How to efficiently develop a wechat applet
Changes in foreign currency bookkeeping and revaluation general ledger balance table (Part 2)
【MEDICAL】Attend to Medical Ontologies: Content Selection for Clinical Abstractive Summarization
随机推荐
Oracle apex Ajax process + dy verification
Cognitive science popularization of middle-aged people
A summary of a middle-aged programmer's study of modern Chinese history
一个中年程序员学习中国近代史的小结
Drawing mechanism of view (I)
@Transational踩坑
Using compose to realize visible scrollbar
Oracle RMAN semi automatic recovery script restore phase
Two dimensional array de duplication in PHP
[introduction to information retrieval] Chapter 1 Boolean retrieval
【模型蒸馏】TinyBERT: Distilling BERT for Natural Language Understanding
【MEDICAL】Attend to Medical Ontologies: Content Selection for Clinical Abstractive Summarization
view的绘制机制(二)
一份Slide两张表格带你快速了解目标检测
Oracle segment advisor, how to deal with row link row migration, reduce high water level
Only the background of famous universities and factories can programmers have a way out? Netizen: two, big factory background is OK
中年人的认知科普
A slide with two tables will help you quickly understand the target detection
Play online games with mame32k
Sparksql data skew