当前位置:网站首页>math_ Derivative function derivation of limit & differential & derivative & derivative / logarithmic function (derivative definition limit method) / derivative formula derivation of exponential functi
math_ Derivative function derivation of limit & differential & derivative & derivative / logarithmic function (derivative definition limit method) / derivative formula derivation of exponential functi
2022-07-06 03:52:00 【xuchaoxin1375】
List of articles
differential & derivative & Wechat Business

Function in x = x 0 x=x_0 x=x0 Definition of derivative
- Define two points
A x 0 ( x 0 , f ( x 0 ) ) ; ( finger set x = x 0 It's about Of extremely limit ) B x = ( x , f ( x ) ) = ( x 0 + Δ x , f ( x 0 + Δ x ) ) { Δ x = x − x 0 Δ y = { f ( x ) − f ( x 0 ) f ( x 0 + Δ x ) − f ( x 0 ) x → x 0 * Δ x → 0 Yes when , also remember h = Δ x A_{x_0}(x_0,f(x_0));( Appoint x=x_0 Limit at ) \\ B_x=(x,f(x))=(x_0+\Delta x,f(x_0+\Delta x)) \\ \begin{cases} \Delta x=x-x_0 \\ \Delta y= \begin{cases} f(x)-f(x_0) \\ f(x_0+\Delta x)-f(x_0) \end{cases} \end{cases} \\ x\rightarrow x_0 \Longleftrightarrow \Delta x\rightarrow 0 \\ Sometimes , Also remember h=\Delta x Ax0(x0,f(x0));( finger set x=x0 It's about Of extremely limit )Bx=(x,f(x))=(x0+Δx,f(x0+Δx))⎩⎪⎨⎪⎧Δx=x−x0Δy={ f(x)−f(x0)f(x0+Δx)−f(x0)x→x0*Δx→0 Yes when , also remember h=Δx
lim Δ x → 0 Δ y Δ x = { lim Δ x → 0 f ( x 0 + Δ x ) − f ( x 0 ) Δ x lim x → x 0 f ( x ) − f ( x 0 ) x − x 0 lim h → 0 f ( x 0 + h ) − f ( x 0 ) h \lim_{\Delta x\rightarrow 0}{\frac{\Delta y}{\Delta x}} =\begin{cases} \lim\limits_{\Delta x\rightarrow 0}{\frac{f(x_0+\Delta x)-f(x_0)}{\Delta x}} \\ \lim\limits_{x\rightarrow x_0}{\frac{f(x)-f(x_0)}{x-x_0}} \\ \lim\limits_{h\rightarrow 0}{\frac{f(x_0+h)-f(x_0)}{h} } \end{cases} Δx→0limΔxΔy=⎩⎪⎪⎪⎨⎪⎪⎪⎧Δx→0limΔxf(x0+Δx)−f(x0)x→x0limx−x0f(x)−f(x0)h→0limhf(x0+h)−f(x0)
Usually , For the convenience of writing , The third form is often used for derivation :
f ′ ( x 0 ) = lim h → 0 f ( x 0 + h ) − f ( x 0 ) h f'(x_0)=\lim\limits_{ h \rightarrow 0}{\frac{f(x_0+h)-f(x_0)}{h} } f′(x0)=h→0limhf(x0+h)−f(x0)
Definition of derivative function
Similar to the definition of derivative , We define the derivative in x 0 x_0 x0 Replace with x
f ′ ( x ) = lim Δ x → 0 f ( x + Δ x ) − f ( x ) Δ x = lim h → 0 f ( x + h ) − f ( x ) h f'(x)=\lim_{\Delta x\rightarrow0}\frac{f(x+\Delta x)-f(x)}{\Delta x} =\lim_{h\rightarrow 0}\frac{f(x+h)-f(x)}{h} f′(x)=Δx→0limΔxf(x+Δx)−f(x)=h→0limhf(x+h)−f(x)
remember
g ( h ) = f ( x + h ) − f ( x ) h g(h)=\frac{f(x+h)-f(x)}{h} g(h)=hf(x+h)−f(x)be
f ′ ( x ) = lim Δ x → 0 g ( Δ x ) = lim h → 0 g ( h ) this in this Well Write , yes by 了 strong transfer , benefit use guide Count set The righteous seek guide Count ( guide Letter Count ) Of when Hou , By seek extremely limit Of Letter Count g ( h ) Of since change The amount h ( namely f ( x ) since change The amount x Of increase The amount Δ x ) And By seek guide Count Of f ( x ) Of since change The amount x No Same as f'(x)=\lim_{\Delta x \rightarrow 0}{g(\Delta x)} =\lim_{h \rightarrow 0}{g(h)} \\ This is what it says here , To emphasize , Use the definition of derivative to find the derivative ( Derivative function ) When , \\ The function whose limit is found g(h) The independent variable of h( namely f(x) The independent variables x The incremental \Delta x) And the derivative of f(x) The independent variable of x Different f′(x)=Δx→0limg(Δx)=h→0limg(h) this in this Well Write , yes by 了 strong transfer , benefit use guide Count set The righteous seek guide Count ( guide Letter Count ) Of when Hou , By seek extremely limit Of Letter Count g(h) Of since change The amount h( namely f(x) since change The amount x Of increase The amount Δx) And By seek guide Count Of f(x) Of since change The amount x No Same asobviously , f ( x ) stay x 0 It's about Of guide Count f ′ ( x 0 ) Just yes guide Letter Count f ′ ( x ) stay x = x 0 It's about Of Letter Count value f(x) stay x_0 Derivative at f'(x_0) Is the derivative function f'(x) stay x=x_0 The value of the function at f(x) stay x0 It's about Of guide Count f′(x0) Just yes guide Letter Count f′(x) stay x=x0 It's about Of Letter Count value
- f ′ ( x 0 ) = f ′ ( x ) ∣ x = x 0 = d x d y f'(x_0)=f'(x)|_{x=x_0}=\frac{dx}{dy} f′(x0)=f′(x)∣x=x0=dydx
Derivative derivation of logarithmic function ( Derivative definition limit method )
f ( x ) = l o g a x f ′ ( x ) = ( l o g a x ) ′ = lim h → 0 l o g a ( x + h ) − l o g a ( x ) h = lim h → 0 l o g a ( x + h x ) h = lim h → 0 1 h l o g a ( x + h x ) = lim h → 0 l o g a ( 1 + h x ) 1 h remember g ( h ) = l o g a ( 1 + h x ) 1 h ( l o g a x ) ′ = lim h → 0 g ( h ) ; g ( h ) Of since change The amount yes h ( g ( h ) take x see do often The amount ) The extremely limit yes 1 ∞ class type ; from The first Two heavy want extremely limit Of PUSH wide Male type have to To : A = lim h → 0 h x 1 h = 1 x the With Yes On u = ϕ ( h ) = ( 1 + h x ) 1 h ; u 0 = lim h → 0 u = e 1 x also from complex close Letter Count Of extremely limit shipment count Law be : lim h → 0 g ( h ) = lim u → u 0 l o g a u = l o g a u 0 = l o g a e 1 x root According to the in At the end of Male type have to To ( l o g a x ) ′ = l o g a e 1 x = ln e 1 x ln a = 1 x 1 ln a f(x)=log_a x \\ f'(x)=(log_a x)'=\lim_{h\rightarrow 0}\frac{log_a{(x+h)}-log_a(x)}{h} =\lim_{h\rightarrow 0}\frac{log_a(\frac{x+h}{x})}{h} \\=\lim_{h\rightarrow 0}\frac{1}{h}{log_a({x+h}{x})} \\=\lim_{h\rightarrow 0}{log_a{(1+\frac{h}{x})^{\frac{1}{h}}}} \\ remember g(h)={log_a{(1+\frac{h}{x})^{\frac{1}{h}}}} \\(log_a x)'=\lim_{h\rightarrow 0}g(h);g(h) The independent variable of is h(g(h) take x As a constant ) \\ The limit is 1^\infin type ; From the generalized formula of the second important limit :A=\lim_{h\rightarrow 0}\frac{h}{x}\frac{1}{h}=\frac{1}{x} \\ So for u=\phi(h)=(1+\frac{h}{x})^{\frac{1}{h}}; \\ u_0=\lim_{h\rightarrow 0}{u}=e^{\frac{1}{x}} \\ By the limit algorithm of composite function : \lim_{h\rightarrow 0}g(h)=\lim_{u\rightarrow u_0}log_a{u}=log_a u_0=log_a e^\frac{1}{x} \\ According to the bottom changing formula (log_a x)'=log_ae^{\frac{1}{x}}=\frac{\ln e^{\frac{1}{x}}}{\ln a}=\frac{1}{x}\frac{1}{\ln a} f(x)=logaxf′(x)=(logax)′=h→0limhloga(x+h)−loga(x)=h→0limhloga(xx+h)=h→0limh1loga(x+hx)=h→0limloga(1+xh)h1 remember g(h)=loga(1+xh)h1(logax)′=h→0limg(h);g(h) Of since change The amount yes h(g(h) take x see do often The amount ) The extremely limit yes 1∞ class type ; from The first Two heavy want extremely limit Of PUSH wide Male type have to To :A=h→0limxhh1=x1 the With Yes On u=ϕ(h)=(1+xh)h1;u0=h→0limu=ex1 also from complex close Letter Count Of extremely limit shipment count Law be :h→0limg(h)=u→u0limlogau=logau0=logaex1 root According to the in At the end of Male type have to To (logax)′=logaex1=lnalnex1=x1lna1
Derivative and differential
- Differential is another description of derivative
- derivative y ′ = d y d x y'=\frac{dy}{dx} y′=dxdy,( The differential of a function dy Divide by the argument x Differential of dx, So the derivative is also called Wechat Business )
Derivative of logarithmic function
( l o g a x ) ′ = 1 x ln a (log_ax)'=\frac{1}{x\ln a} (logax)′=xlna1
- The derivative of logarithmic function can be calculated by the second important limit
Derivation of inverse function
With a x Of guide Letter Count PUSH guide by example , benefit use back Letter Count seek guide Law be With a^x As an example , Using the derivation rule of inverse function With ax Of guide Letter Count PUSH guide by example , benefit use back Letter Count seek guide Law be
Direct functions
- x = x ( y ) = l o g a y x , y take value Fan around : y ∈ ( 0 , + ∞ ) x ∈ ( − ∞ , + ∞ ) ( since change The amount y Of ) Letter Count x Of guide Count : x ′ ( y ) = 1 y 1 ln a x=x(y)=log_ay \\x,y Value range : \\ y\in (0,+\infin) \\x \in (-\infin,+\infin) \\( The independent variables y Of ) function x The derivative of : \\x'(y)=\frac{1}{y}\frac{1}{\ln a} \\ x=x(y)=logayx,y take value Fan around :y∈(0,+∞)x∈(−∞,+∞)( since change The amount y Of ) Letter Count x Of guide Count :x′(y)=y1lna1
Inverse function
- y = y ( x ) = a x * Letter Count x ( y ) and Letter Count y ( x ) mutual by back Letter Count y=y(x)=a^x \\ \bigstar function x(y) And the function y(x) They're inverse functions to each other \\ y=y(x)=ax* Letter Count x(y) and Letter Count y(x) mutual by back Letter Count
Derivative of inverse function
- be : y ′ ( x ) = 1 x ′ ( y ) = 1 1 x ln a = x ln a namely , y ′ ( x ) = ( a x ) ′ = x ln a ∴ ( a x ) ′ = x ln a be : y'(x)=\frac{1}{x'(y)}=\frac{1}{\frac{1}{x\ln a}}=x\ln a \\ namely ,y'(x)=(a^x)'=x\ln a \\ \therefore (a^x)'=x\ln a be :y′(x)=x′(y)1=xlna11=xlna namely ,y′(x)=(ax)′=xlna∴(ax)′=xlna
Logarithmic derivation
With seek a x Of guide Letter Count by example , send use Yes Count seek guide Law ( " No benefit seek guide Law ) In order to a^x As an example , Use logarithmic derivation ( Bernoulli derivation ) With seek ax Of guide Letter Count by example , send use Yes Count seek guide Law ( " No benefit seek guide Law )
y = a x ln y = ln a x = x ln a two edge Same as when seek guide 1 y y ′ = ln a y ′ = y ln a = a x ln a namely , ( a x ) ′ = a x ln a y=a^x \\ \ln y=\ln a^x=x \ln a \\ Take derivatives on both sides at the same time \\ \frac{1}{y}y'=\ln a \\ y'=y\ln a=a^x \ln a \\ namely ,(a^x)'=a^x \ln a y=axlny=lnax=xlna two edge Same as when seek guide y1y′=lnay′=ylna=axlna namely ,(ax)′=axlna
边栏推荐
- mysql从一个连续时间段的表中读取缺少数据
- C mouse event and keyboard event of C (XXVIII)
- Chinese brand hybrid technology: there is no best technical route, only better products
- Maxay paper latex template description
- User experience index system
- Align items and align content in flex layout
- [001] [stm32] how to download STM32 original factory data
- Ethernet port &arm & MOS &push-pull open drain &up and down &high and low sides &time domain and frequency domain Fourier
- BUAA calculator (expression calculation - expression tree implementation)
- Pandora IOT development board learning (HAL Library) - Experiment 9 PWM output experiment (learning notes)
猜你喜欢
随机推荐
Introduction to data types in MySQL
/usr/bin/gzip: 1: ELF: not found/usr/bin/gzip: 3: : not found/usr/bin/gzip: 4: Syntax error:
Failure causes and optimization methods of LTE CSFB
Security xxE vulnerability recurrence (XXe Lab)
[meisai] meisai thesis reference template
User experience index system
Schnuka: visual positioning system working principle of visual positioning system
SSTI template injection explanation and real problem practice
Facebook等大厂超十亿用户数据遭泄露,早该关注DID了
three. JS page background animation liquid JS special effect
Ks008 SSM based press release system
Chinese brand hybrid technology: there is no best technical route, only better products
The ECU of 21 Audi q5l 45tfsi brushes is upgraded to master special adjustment, and the horsepower is safely and stably increased to 305 horsepower
On Data Mining
KS003基于JSP和Servlet实现的商城系统
Pandora IOT development board learning (HAL Library) - Experiment 9 PWM output experiment (learning notes)
有条件地 [JsonIgnore]
Maxay paper latex template description
Crawler of explanation and application of agency theory
Prime protocol announces cross chain interconnection applications on moonbeam









