当前位置:网站首页>math_ Derivative function derivation of limit & differential & derivative & derivative / logarithmic function (derivative definition limit method) / derivative formula derivation of exponential functi
math_ Derivative function derivation of limit & differential & derivative & derivative / logarithmic function (derivative definition limit method) / derivative formula derivation of exponential functi
2022-07-06 03:52:00 【xuchaoxin1375】
List of articles
differential & derivative & Wechat Business

Function in x = x 0 x=x_0 x=x0 Definition of derivative
- Define two points
A x 0 ( x 0 , f ( x 0 ) ) ; ( finger set x = x 0 It's about Of extremely limit ) B x = ( x , f ( x ) ) = ( x 0 + Δ x , f ( x 0 + Δ x ) ) { Δ x = x − x 0 Δ y = { f ( x ) − f ( x 0 ) f ( x 0 + Δ x ) − f ( x 0 ) x → x 0 * Δ x → 0 Yes when , also remember h = Δ x A_{x_0}(x_0,f(x_0));( Appoint x=x_0 Limit at ) \\ B_x=(x,f(x))=(x_0+\Delta x,f(x_0+\Delta x)) \\ \begin{cases} \Delta x=x-x_0 \\ \Delta y= \begin{cases} f(x)-f(x_0) \\ f(x_0+\Delta x)-f(x_0) \end{cases} \end{cases} \\ x\rightarrow x_0 \Longleftrightarrow \Delta x\rightarrow 0 \\ Sometimes , Also remember h=\Delta x Ax0(x0,f(x0));( finger set x=x0 It's about Of extremely limit )Bx=(x,f(x))=(x0+Δx,f(x0+Δx))⎩⎪⎨⎪⎧Δx=x−x0Δy={ f(x)−f(x0)f(x0+Δx)−f(x0)x→x0*Δx→0 Yes when , also remember h=Δx
lim Δ x → 0 Δ y Δ x = { lim Δ x → 0 f ( x 0 + Δ x ) − f ( x 0 ) Δ x lim x → x 0 f ( x ) − f ( x 0 ) x − x 0 lim h → 0 f ( x 0 + h ) − f ( x 0 ) h \lim_{\Delta x\rightarrow 0}{\frac{\Delta y}{\Delta x}} =\begin{cases} \lim\limits_{\Delta x\rightarrow 0}{\frac{f(x_0+\Delta x)-f(x_0)}{\Delta x}} \\ \lim\limits_{x\rightarrow x_0}{\frac{f(x)-f(x_0)}{x-x_0}} \\ \lim\limits_{h\rightarrow 0}{\frac{f(x_0+h)-f(x_0)}{h} } \end{cases} Δx→0limΔxΔy=⎩⎪⎪⎪⎨⎪⎪⎪⎧Δx→0limΔxf(x0+Δx)−f(x0)x→x0limx−x0f(x)−f(x0)h→0limhf(x0+h)−f(x0)
Usually , For the convenience of writing , The third form is often used for derivation :
f ′ ( x 0 ) = lim h → 0 f ( x 0 + h ) − f ( x 0 ) h f'(x_0)=\lim\limits_{ h \rightarrow 0}{\frac{f(x_0+h)-f(x_0)}{h} } f′(x0)=h→0limhf(x0+h)−f(x0)
Definition of derivative function
Similar to the definition of derivative , We define the derivative in x 0 x_0 x0 Replace with x
f ′ ( x ) = lim Δ x → 0 f ( x + Δ x ) − f ( x ) Δ x = lim h → 0 f ( x + h ) − f ( x ) h f'(x)=\lim_{\Delta x\rightarrow0}\frac{f(x+\Delta x)-f(x)}{\Delta x} =\lim_{h\rightarrow 0}\frac{f(x+h)-f(x)}{h} f′(x)=Δx→0limΔxf(x+Δx)−f(x)=h→0limhf(x+h)−f(x)
remember
g ( h ) = f ( x + h ) − f ( x ) h g(h)=\frac{f(x+h)-f(x)}{h} g(h)=hf(x+h)−f(x)be
f ′ ( x ) = lim Δ x → 0 g ( Δ x ) = lim h → 0 g ( h ) this in this Well Write , yes by 了 strong transfer , benefit use guide Count set The righteous seek guide Count ( guide Letter Count ) Of when Hou , By seek extremely limit Of Letter Count g ( h ) Of since change The amount h ( namely f ( x ) since change The amount x Of increase The amount Δ x ) And By seek guide Count Of f ( x ) Of since change The amount x No Same as f'(x)=\lim_{\Delta x \rightarrow 0}{g(\Delta x)} =\lim_{h \rightarrow 0}{g(h)} \\ This is what it says here , To emphasize , Use the definition of derivative to find the derivative ( Derivative function ) When , \\ The function whose limit is found g(h) The independent variable of h( namely f(x) The independent variables x The incremental \Delta x) And the derivative of f(x) The independent variable of x Different f′(x)=Δx→0limg(Δx)=h→0limg(h) this in this Well Write , yes by 了 strong transfer , benefit use guide Count set The righteous seek guide Count ( guide Letter Count ) Of when Hou , By seek extremely limit Of Letter Count g(h) Of since change The amount h( namely f(x) since change The amount x Of increase The amount Δx) And By seek guide Count Of f(x) Of since change The amount x No Same asobviously , f ( x ) stay x 0 It's about Of guide Count f ′ ( x 0 ) Just yes guide Letter Count f ′ ( x ) stay x = x 0 It's about Of Letter Count value f(x) stay x_0 Derivative at f'(x_0) Is the derivative function f'(x) stay x=x_0 The value of the function at f(x) stay x0 It's about Of guide Count f′(x0) Just yes guide Letter Count f′(x) stay x=x0 It's about Of Letter Count value
- f ′ ( x 0 ) = f ′ ( x ) ∣ x = x 0 = d x d y f'(x_0)=f'(x)|_{x=x_0}=\frac{dx}{dy} f′(x0)=f′(x)∣x=x0=dydx
Derivative derivation of logarithmic function ( Derivative definition limit method )
f ( x ) = l o g a x f ′ ( x ) = ( l o g a x ) ′ = lim h → 0 l o g a ( x + h ) − l o g a ( x ) h = lim h → 0 l o g a ( x + h x ) h = lim h → 0 1 h l o g a ( x + h x ) = lim h → 0 l o g a ( 1 + h x ) 1 h remember g ( h ) = l o g a ( 1 + h x ) 1 h ( l o g a x ) ′ = lim h → 0 g ( h ) ; g ( h ) Of since change The amount yes h ( g ( h ) take x see do often The amount ) The extremely limit yes 1 ∞ class type ; from The first Two heavy want extremely limit Of PUSH wide Male type have to To : A = lim h → 0 h x 1 h = 1 x the With Yes On u = ϕ ( h ) = ( 1 + h x ) 1 h ; u 0 = lim h → 0 u = e 1 x also from complex close Letter Count Of extremely limit shipment count Law be : lim h → 0 g ( h ) = lim u → u 0 l o g a u = l o g a u 0 = l o g a e 1 x root According to the in At the end of Male type have to To ( l o g a x ) ′ = l o g a e 1 x = ln e 1 x ln a = 1 x 1 ln a f(x)=log_a x \\ f'(x)=(log_a x)'=\lim_{h\rightarrow 0}\frac{log_a{(x+h)}-log_a(x)}{h} =\lim_{h\rightarrow 0}\frac{log_a(\frac{x+h}{x})}{h} \\=\lim_{h\rightarrow 0}\frac{1}{h}{log_a({x+h}{x})} \\=\lim_{h\rightarrow 0}{log_a{(1+\frac{h}{x})^{\frac{1}{h}}}} \\ remember g(h)={log_a{(1+\frac{h}{x})^{\frac{1}{h}}}} \\(log_a x)'=\lim_{h\rightarrow 0}g(h);g(h) The independent variable of is h(g(h) take x As a constant ) \\ The limit is 1^\infin type ; From the generalized formula of the second important limit :A=\lim_{h\rightarrow 0}\frac{h}{x}\frac{1}{h}=\frac{1}{x} \\ So for u=\phi(h)=(1+\frac{h}{x})^{\frac{1}{h}}; \\ u_0=\lim_{h\rightarrow 0}{u}=e^{\frac{1}{x}} \\ By the limit algorithm of composite function : \lim_{h\rightarrow 0}g(h)=\lim_{u\rightarrow u_0}log_a{u}=log_a u_0=log_a e^\frac{1}{x} \\ According to the bottom changing formula (log_a x)'=log_ae^{\frac{1}{x}}=\frac{\ln e^{\frac{1}{x}}}{\ln a}=\frac{1}{x}\frac{1}{\ln a} f(x)=logaxf′(x)=(logax)′=h→0limhloga(x+h)−loga(x)=h→0limhloga(xx+h)=h→0limh1loga(x+hx)=h→0limloga(1+xh)h1 remember g(h)=loga(1+xh)h1(logax)′=h→0limg(h);g(h) Of since change The amount yes h(g(h) take x see do often The amount ) The extremely limit yes 1∞ class type ; from The first Two heavy want extremely limit Of PUSH wide Male type have to To :A=h→0limxhh1=x1 the With Yes On u=ϕ(h)=(1+xh)h1;u0=h→0limu=ex1 also from complex close Letter Count Of extremely limit shipment count Law be :h→0limg(h)=u→u0limlogau=logau0=logaex1 root According to the in At the end of Male type have to To (logax)′=logaex1=lnalnex1=x1lna1
Derivative and differential
- Differential is another description of derivative
- derivative y ′ = d y d x y'=\frac{dy}{dx} y′=dxdy,( The differential of a function dy Divide by the argument x Differential of dx, So the derivative is also called Wechat Business )
Derivative of logarithmic function
( l o g a x ) ′ = 1 x ln a (log_ax)'=\frac{1}{x\ln a} (logax)′=xlna1
- The derivative of logarithmic function can be calculated by the second important limit
Derivation of inverse function
With a x Of guide Letter Count PUSH guide by example , benefit use back Letter Count seek guide Law be With a^x As an example , Using the derivation rule of inverse function With ax Of guide Letter Count PUSH guide by example , benefit use back Letter Count seek guide Law be
Direct functions
- x = x ( y ) = l o g a y x , y take value Fan around : y ∈ ( 0 , + ∞ ) x ∈ ( − ∞ , + ∞ ) ( since change The amount y Of ) Letter Count x Of guide Count : x ′ ( y ) = 1 y 1 ln a x=x(y)=log_ay \\x,y Value range : \\ y\in (0,+\infin) \\x \in (-\infin,+\infin) \\( The independent variables y Of ) function x The derivative of : \\x'(y)=\frac{1}{y}\frac{1}{\ln a} \\ x=x(y)=logayx,y take value Fan around :y∈(0,+∞)x∈(−∞,+∞)( since change The amount y Of ) Letter Count x Of guide Count :x′(y)=y1lna1
Inverse function
- y = y ( x ) = a x * Letter Count x ( y ) and Letter Count y ( x ) mutual by back Letter Count y=y(x)=a^x \\ \bigstar function x(y) And the function y(x) They're inverse functions to each other \\ y=y(x)=ax* Letter Count x(y) and Letter Count y(x) mutual by back Letter Count
Derivative of inverse function
- be : y ′ ( x ) = 1 x ′ ( y ) = 1 1 x ln a = x ln a namely , y ′ ( x ) = ( a x ) ′ = x ln a ∴ ( a x ) ′ = x ln a be : y'(x)=\frac{1}{x'(y)}=\frac{1}{\frac{1}{x\ln a}}=x\ln a \\ namely ,y'(x)=(a^x)'=x\ln a \\ \therefore (a^x)'=x\ln a be :y′(x)=x′(y)1=xlna11=xlna namely ,y′(x)=(ax)′=xlna∴(ax)′=xlna
Logarithmic derivation
With seek a x Of guide Letter Count by example , send use Yes Count seek guide Law ( " No benefit seek guide Law ) In order to a^x As an example , Use logarithmic derivation ( Bernoulli derivation ) With seek ax Of guide Letter Count by example , send use Yes Count seek guide Law ( " No benefit seek guide Law )
y = a x ln y = ln a x = x ln a two edge Same as when seek guide 1 y y ′ = ln a y ′ = y ln a = a x ln a namely , ( a x ) ′ = a x ln a y=a^x \\ \ln y=\ln a^x=x \ln a \\ Take derivatives on both sides at the same time \\ \frac{1}{y}y'=\ln a \\ y'=y\ln a=a^x \ln a \\ namely ,(a^x)'=a^x \ln a y=axlny=lnax=xlna two edge Same as when seek guide y1y′=lnay′=ylna=axlna namely ,(ax)′=axlna
边栏推荐
- 2.1 rtthread pin device details
- Edcircles: a real time circle detector with a false detection control translation
- Basic concepts of LTE user experience
- Error 1045 (28000): access denied for user 'root' @ 'localhost' (using password: no/yes
- On Data Mining
- /usr/bin/gzip: 1: ELF: not found/usr/bin/gzip: 3: : not found/usr/bin/gzip: 4: Syntax error:
- [practice] mathematics in lottery
- [FPGA tutorial case 12] design and implementation of complex multiplier based on vivado core
- C#(二十七)之C#窗体应用
- How do we make money in agriculture, rural areas and farmers? 100% for reference
猜你喜欢

Teach you to build your own simple BP neural network with pytoch (take iris data set as an example)

Align items and align content in flex layout

In Net 6 CS more concise method

WPF效果第一百九十一篇之框选ListBox

自动化测试怎么规范部署?

Scalpel like analysis of JVM -- this article takes you to peek into the secrets of JVM

Svg drag point crop image JS effect

How do we make money in agriculture, rural areas and farmers? 100% for reference

Microkernel structure understanding

JS Vanke banner rotation chart JS special effect
随机推荐
math_极限&微分&导数&微商/对数函数的导函数推导(导数定义极限法)/指数函数求导公式推导(反函数求导法则/对数求导法)
cookie,session,Token 这些你都知道吗?
登录mysql输入密码时报错,ERROR 1045 (28000): Access denied for user ‘root‘@‘localhost‘ (using password: NO/YES
【FPGA教程案例12】基于vivado核的复数乘法器设计与实现
Ks008 SSM based press release system
Pytoch foundation - (2) mathematical operation of tensor
[rust notes] 18 macro
P7735-[noi2021] heavy and heavy edges [tree chain dissection, line segment tree]
[Key shake elimination] development of key shake elimination module based on FPGA
关于非虚函数的假派生
多项目编程极简用例
C language -- structs, unions, enumerations, and custom types
2.2 STM32 GPIO operation
Ybtoj coloring plan [tree chain dissection, segment tree, tarjan]
BUAA喜鹊筑巢
Facebook等大厂超十亿用户数据遭泄露,早该关注DID了
Alibaba testers use UI automated testing to achieve element positioning
Record the pit of NETCORE's memory surge
3.2 rtthread 串口设备(V2)详解
MySQL 中的数据类型介绍