当前位置:网站首页>P7735-[noi2021] heavy and heavy edges [tree chain dissection, line segment tree]

P7735-[noi2021] heavy and heavy edges [tree chain dissection, line segment tree]

2022-07-06 03:44:00 QuantAsk

Preface

On the front line of A I'm writing a blog now
 Please add a picture description


On the subject

Topic link :https://www.luogu.com.cn/problem/P7735


The main idea of the topic

Yes n n n A tree at a point , All edges are light at first , m m m operations .

  1. hold x → y x\rightarrow y xy The heavy edges connected by all points on the path become light edges , Then turn the edge on the path into a heavy edge .
  2. Ask the number of heavy edges on a path .

1 ≤ T ≤ 3 , 1 ≤ n , m ≤ 1 0 5 1\leq T\leq 3,1\leq n,m\leq 10^5 1T3,1n,m105


Their thinking

Just find a spot to be the root , We use each point to store the information it connects to its parent node .

Then consider how to operate , Discovery is a path operation on the tree , Consider tree chain subdivision .

* For the convenience of description, we use the light and heavy sides of tree chain partition In bold Describe

First, we can put all the edges on the path ( Information stored at the corresponding point ) Change to double edge , Then the problem lies in how to change the heavy edge of the connection into a light edge .

It is obviously not feasible to modify these edges violently , We notice that we can easily modify the tree chain after splitting Heavy edge , And on a path Light side Not many paths , So we can consider maintaining only the important edge information , We can process the light edge information when we query .

Then it's obvious , about Heavy edge We use the segment tree to modify the information of , And for Light side , We open a segment tree to record the path number of each endpoint covered last time .

If Light side The two endpoints connected are covered by different paths , Then this side is the light side , Otherwise, it is the heavy side .

Time complexity : O ( m log ⁡ 2 n ) O(m\log^2 n) O(mlog2n)


code

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<iostream>
#include<cctype>
using namespace std;
const int N=1e5+10;
int read(){
    
	int x=0,f=1;char c=getchar();
	while(!isdigit(c)){
    if(c=='-')f=-f;c=getchar();}
	while(isdigit(c)){
    x=(x<<1)+(x<<3)+c-48;c=getchar();}
	return x*f;
}
struct node{
    
	int to,next;
}a[N<<1];
int T,n,m,cnt,tot,ls[N],fa[N],dep[N];
int rfn[N],ed[N],siz[N],son[N],top[N],id[N];
void addl(int x,int y){
    
	a[++tot].to=y;
	a[tot].next=ls[x];
	ls[x]=tot;return;
}
void dfs(int x){
    
	rfn[x]=++cnt;siz[x]=1;
	dep[x]=dep[fa[x]]+1;
	for(int i=ls[x];i;i=a[i].next){
    
		int y=a[i].to;
		if(y==fa[x])continue;
		fa[y]=x;dfs(y);
		siz[x]+=siz[y];
		if(siz[y]>siz[son[x]])son[x]=y;
	}
	ed[x]=cnt;
	return;
}
void dFs(int x){
    
	id[x]=++cnt;
	if(son[x]){
    
		top[son[x]]=top[x];
		dFs(son[x]);
	}
	for(int i=ls[x];i;i=a[i].next){
    
		int y=a[i].to;
		if(y==fa[x]||y==son[x])continue;
		top[y]=y;dFs(y);
	}
	return;
}
struct SegTree{
    
	int w[N<<2],lazy[N<<2];
	void Clear(){
    
		memset(w,0,sizeof(w));
		memset(lazy,0,sizeof(lazy));
		return;
	}
	void Downdata(int x,int l,int r){
    
		if(!lazy[x])return;int mid=(l+r)>>1;
		w[x*2]=(mid-l+1)*lazy[x];
		w[x*2+1]=(r-mid)*lazy[x];
		lazy[x*2]=lazy[x*2+1]=lazy[x]; 
		lazy[x]=0;return;
	}
	int Ask(int x,int L,int R,int l,int r){
    
		if(L==l&&R==r)return w[x];
		int mid=(L+R)>>1;Downdata(x,L,R);
		if(r<=mid)return Ask(x*2,L,mid,l,r);
		if(l>mid)return Ask(x*2+1,mid+1,R,l,r);
		return Ask(x*2,L,mid,l,mid)+Ask(x*2+1,mid+1,R,mid+1,r);
	}
	void Change(int x,int L,int R,int l,int r,int val){
    
		if(L==l&&R==r){
    w[x]=(R-L+1)*val;lazy[x]=val;return;}
		int mid=(L+R)>>1;Downdata(x,L,R);
		if(r<=mid)Change(x*2,L,mid,l,r,val);
		else if(l>mid)Change(x*2+1,mid+1,R,l,r,val);
		else Change(x*2,L,mid,l,mid,val),Change(x*2+1,mid+1,R,mid+1,r,val);
		w[x]=w[x*2]+w[x*2+1];
	}
}Tw,Tl;
void Updata(int x,int y,int pos){
    
	while(top[x]!=top[y]){
    
		if(dep[top[x]]<dep[top[y]])swap(x,y);
		if(top[x]!=x)Tw.Change(1,1,n,id[top[x]]+1,id[x],1);
		Tl.Change(1,1,n,id[top[x]],id[x],pos);
		if(son[x])Tw.Change(1,1,n,id[x]+1,id[x]+1,0);
		x=fa[top[x]];
	}
	if(dep[x]>dep[y])swap(x,y);
	Tl.Change(1,1,n,id[x],id[y],pos);
	if(id[x]!=id[y])Tw.Change(1,1,n,id[x]+1,id[y],1);
	if(son[y])Tw.Change(1,1,n,id[y]+1,id[y]+1,0);
	if(top[x]!=x)Tw.Change(1,1,n,id[x],id[x],0);
}
bool check(int x){
    
	int p=Tl.Ask(1,1,n,id[x],id[x]);
	if(!p)return 0;
	return (p==Tl.Ask(1,1,n,id[fa[x]],id[fa[x]]));
}
int Ask(int x,int y){
    
	int ans=0;
	while(top[x]!=top[y]){
    
		if(dep[top[x]]<dep[top[y]])swap(x,y);
		ans+=Tw.Ask(1,1,n,id[top[x]],id[x]);
		x=top[x];ans+=check(x);
		x=fa[x];
	}
	if(dep[x]>dep[y])swap(x,y);
	if(id[x]!=id[y])ans+=Tw.Ask(1,1,n,id[x]+1,id[y]);
	return ans;
}
int main()
{
    
	T=read();
	while(T--){
    
		tot=0;
		memset(ls,0,sizeof(ls));
		memset(fa,0,sizeof(fa));
		memset(son,0,sizeof(son));
		Tl.Clear();Tw.Clear();
		n=read();m=read();
		for(int i=1;i<n;i++){
    
			int x=read(),y=read();
			addl(x,y);addl(y,x);
		}
		cnt=0;dfs(1);cnt=0;
		top[1]=1;dFs(1);cnt=0;
		while(m--){
    
			int op=read(),x=read(),y=read();
			if(op==1)++cnt,Updata(x,y,cnt);
			else cout<<Ask(x,y)<<'\n';
		}
	}
	return 0;
}
原网站

版权声明
本文为[QuantAsk]所创,转载请带上原文链接,感谢
https://yzsam.com/2022/02/202202132309038543.html