当前位置:网站首页>paddle入门-使用LeNet在MNIST实现图像分类方法二

paddle入门-使用LeNet在MNIST实现图像分类方法二

2022-07-07 22:06:00 Vertira

使用LeNet在MNIST实现图像分类方法二

与方法一相比,方法二 有点麻烦,适合进阶

五、方式2:基于基础API,完成模型的训练与预测

 

5.1 模型训练

组网后,开始对模型进行训练,先构建train_loader,加载训练数据,然后定义train函数,设置好损失函数后,按batch加载数据,完成模型的训练。

import paddle.nn.functional as F
train_loader = paddle.io.DataLoader(train_dataset, batch_size=64, shuffle=True)
# 加载训练集 batch_size 设为 64
def train(model):
    model.train()
    epochs = 2
    optim = paddle.optimizer.Adam(learning_rate=0.001, parameters=model.parameters())
    # 用Adam作为优化函数
    for epoch in range(epochs):
        for batch_id, data in enumerate(train_loader()):
            x_data = data[0]
            y_data = data[1]
            predicts = model(x_data)
            loss = F.cross_entropy(predicts, y_data)
            # 计算损失
            acc = paddle.metric.accuracy(predicts, y_data)
            loss.backward()
            if batch_id % 300 == 0:
                print("epoch: {}, batch_id: {}, loss is: {}, acc is: {}".format(epoch, batch_id, loss.numpy(), acc.numpy()))
            optim.step()
            optim.clear_grad()
model = LeNet()
train(model)

 运行结果

epoch: 0, batch_id: 0, loss is: [3.2611141], acc is: [0.078125]
epoch: 0, batch_id: 300, loss is: [0.24404016], acc is: [0.921875]
epoch: 0, batch_id: 600, loss is: [0.03953885], acc is: [1.]
epoch: 0, batch_id: 900, loss is: [0.03700985], acc is: [0.984375]
epoch: 1, batch_id: 0, loss is: [0.05806625], acc is: [0.96875]
epoch: 1, batch_id: 300, loss is: [0.06538856], acc is: [0.953125]
epoch: 1, batch_id: 600, loss is: [0.03884572], acc is: [0.984375]
epoch: 1, batch_id: 900, loss is: [0.01922364], acc is: [0.984375]

5.2 模型验证

训练完成后,需要验证模型的效果,此时,加载测试数据集,然后用训练好的模对测试集进行预测,计算损失与精度。

test_loader = paddle.io.DataLoader(test_dataset, places=paddle.CPUPlace(), batch_size=64)
# 加载测试数据集
def test(model):
    model.eval()
    batch_size = 64
    for batch_id, data in enumerate(test_loader()):
        x_data = data[0]
        y_data = data[1]
        predicts = model(x_data)
        # 获取预测结果
        loss = F.cross_entropy(predicts, y_data)
        acc = paddle.metric.accuracy(predicts, y_data)
        if batch_id % 20 == 0:
            print("batch_id: {}, loss is: {}, acc is: {}".format(batch_id, loss.numpy(), acc.numpy()))
test(model)

 运行结果

batch_id: 0, loss is: [0.01972857], acc is: [0.984375]
batch_id: 20, loss is: [0.19958115], acc is: [0.9375]
batch_id: 40, loss is: [0.23575728], acc is: [0.953125]
batch_id: 60, loss is: [0.07018849], acc is: [0.984375]
batch_id: 80, loss is: [0.02309197], acc is: [0.984375]
batch_id: 100, loss is: [0.00239462], acc is: [1.]
batch_id: 120, loss is: [0.01583934], acc is: [1.]
batch_id: 140, loss is: [0.00399609], acc is: [1.]

方式二结束

以上就是方式二,通过底层API,可以清楚的看到训练和测试中的每一步过程。但是,这种方式比较复杂。因此,我们提供了训练方式一,使用高层API来完成模型的训练与预测。对比底层API,高层API能够更加快速、高效的完成模型的训练与测试。

六、总结

以上就是用LeNet对手写数字数据及MNIST进行分类。本示例提供了两种训练模型的方式,一种可以快速完成模型的组建与预测,非常适合新手用户上手。另一种则需要多个步骤来完成模型的训练,适合进阶用户使用。

方法二的完整代码如下:

import os
import cv2
import numpy as np
from paddle.io import Dataset
import paddle.vision.transforms as T

import matplotlib.pyplot as plt


import paddle.nn.functional as F
import paddle
from paddle.metric import Accuracy

from paddle.vision.transforms import Compose, Normalize

transform = Compose([Normalize(mean=[127.5],
                               std=[127.5],
                               data_format='CHW')])
# 使用transform对数据集做归一化
print('download training data and load training data')
train_dataset = paddle.vision.datasets.MNIST(mode='train', transform=transform)
test_dataset = paddle.vision.datasets.MNIST(mode='test', transform=transform)
print('load finished')
class LeNet(paddle.nn.Layer):
    def __init__(self):
        super(LeNet, self).__init__()
        self.conv1 = paddle.nn.Conv2D(in_channels=1, out_channels=6, kernel_size=5, stride=1, padding=2)
        self.max_pool1 = paddle.nn.MaxPool2D(kernel_size=2,  stride=2)
        self.conv2 = paddle.nn.Conv2D(in_channels=6, out_channels=16, kernel_size=5, stride=1)
        self.max_pool2 = paddle.nn.MaxPool2D(kernel_size=2, stride=2)
        self.linear1 = paddle.nn.Linear(in_features=16*5*5, out_features=120)
        self.linear2 = paddle.nn.Linear(in_features=120, out_features=84)
        self.linear3 = paddle.nn.Linear(in_features=84, out_features=10)

    def forward(self, x):
        x = self.conv1(x)
        x = F.relu(x)
        x = self.max_pool1(x)
        x = self.conv2(x)
        x = F.relu(x)
        x = self.max_pool2(x)
        x = paddle.flatten(x, start_axis=1,stop_axis=-1)
        x = self.linear1(x)
        x = F.relu(x)
        x = self.linear2(x)
        x = F.relu(x)
        x = self.linear3(x)
        return x

#组网后,开始对模型进行训练,先构建train_loader,加载训练数据,然后定义train函数,设置好损失函数后,按batch加载数据,完成模型的训练。

train_loader = paddle.io.DataLoader(train_dataset, batch_size=64, shuffle=True)
# 加载训练集 batch_size 设为 64
def train(model):
    model.train()
    epochs = 2
    optim = paddle.optimizer.Adam(learning_rate=0.001, parameters=model.parameters())
    # 用Adam作为优化函数
    for epoch in range(epochs):
        for batch_id, data in enumerate(train_loader()):
            x_data = data[0]
            y_data = data[1]
            predicts = model(x_data)
            loss = F.cross_entropy(predicts, y_data)
            # 计算损失
            acc = paddle.metric.accuracy(predicts, y_data)
            loss.backward()
            if batch_id % 300 == 0:
                print("epoch: {}, batch_id: {}, loss is: {}, acc is: {}".format(epoch, batch_id, loss.numpy(), acc.numpy()))
            optim.step()
            optim.clear_grad()
model = LeNet()
train(model)

原网站

版权声明
本文为[Vertira]所创,转载请带上原文链接,感谢
https://blog.csdn.net/Vertira/article/details/125662275