当前位置:网站首页>单机高并发模型设计

单机高并发模型设计

2022-07-07 21:58:00 方丈的寺院


背景

在微服务架构下,我们习惯使用多机器、分布式存储、缓存去支持一个高并发的请求模型,而忽略了单机高并发模型是如何工作的。这篇文章通过解构客户端与服务端的建立连接和数据传输过程,阐述下如何进行单机高并发模型设计。

经典C10K问题

如何在一台物理机上同时服务10K用户,及10000个用户,对于java程序员来说,这不是什么难事,使用netty就能构建出支持并发超过10000的服务端程序。那么netty是如何实现的?首先我们忘掉netty,从头开始分析。每个用户一个连接,对于服务端就是两件事

  1. 管理这10000个连接

  2. 处理10000个连接的数据传输

TCP连接与数据传输

连接建立

我们以常见TCP连接为例。

Image

一张很熟悉的图。这篇重点在服务端分析,所以先忽略客户端细节。服务器端通过创建socket,bind端口,listen准备好了。最后通过accept和客户端建立连接。得到一个connectFd,即连接套接字(在Linux都是文件描述符),用来唯一标识一个连接。之后数据传输都基于这个。

数据传输

Image为了进行数据传输,服务端开辟一个线程处理数据。具体过程如下

  1. select应用程序向系统内核空间,询问数据是否准备好(因为有窗口大小限制,不是有数据,就可以读),数据未准备好,应用程序一直阻塞,等待应答。

  2. read内核判断数据准备好了,将数据从内核拷贝到应用程序,完成后,成功返回。

  3. 应用程序进行decode,业务逻辑处理,最后encode,再发送出去,返回给客户端

因为是一个线程处理一个连接数据,对应的线程模型是这样

Image

多路复用

阻塞vs非阻塞

因为一个连接传输,一个线程,需要的线程数太多,占用的资源比较多。同时连接结束,资源销毁。又得重新创建连接。所以一个自然而然的想法是复用线程。即多个连接使用同一个线程。这样就引发一个问题, 原本我们进行数据传输的入口处,,假设线程正在处理某个连接的数据,但是数据又一直没有好时,因为 select是阻塞的,这样即使其他连接有数据可读,也读不到。所以不能是阻塞的,否则多个连接没法共用一个线程。所以必须是非阻塞的。

轮询 VS 事件通知

改成非阻塞后,应用程序就需要不断轮询内核空间,判断某个连接是否ready.

  
  1. for (connectfd fd: connectFds {

  2. if fd.ready {

  3. process();

  4. }

  5. }

轮询这种方式效率比较低,非常耗CPU,所以一种常见的做法就是被调用方发事件通知告知调用方,而不是调用方一直轮询。这就是IO多路复用,一路指的就是标准输入和连接套接字。通过提前注册一批套接字到某个分组中,当这个分组中有任意一个IO事件时,就去通知阻塞对象准备好了。

select/poll/epoll

IO多路复用技术实现常见有select,poll。select与poll区别不大,主要就是poll没有最大文件描述符的限制。

从轮询变成事件通知,使用多路复用IO优化后,虽然应用程序不用一直轮询内核空间了。但是收到内核空间的事件通知后,应用程序并不知道是哪个对应的连接的事件,还得遍历一下

  
  1. onEvent() {

  2. // 监听到事件

  3. for (connectfd fd: registerConnectFds {

  4. if fd.ready {

  5. process();

  6. }

  7. }

  8. }

可预见的,随着连接数增加,耗时在正比增加。相比较poll返回的是事件个数,epoll返回是有事件发生的connectFd数组,这样就避免了应用程序的轮询。

  
  1. onEvent() {

  2. // 监听到事件

  3. for (connectfd fd: readyConnectFds {

  4. process();

  5. }

  6. }

当然epoll的高性能不止是这个,还有边缘触发(edge-triggered),就不在本篇阐述了。

非阻塞IO+多路复用整理流程如下:

Image

  1. select应用程序向系统内核空间,询问数据是否准备好(因为有窗口大小限制,不是有数据,就可以读),直接返回,非阻塞调用。

  2. 内核空间中有数据准备好了,发送ready read给应用程序

  3. 应用程序读取数据,进行decode,业务逻辑处理,最后encode,再发送出去,返回给客户端

线程池分工

上面我们主要是通过非阻塞+多路复用IO来解决局部的 selectread问题。我们再重新梳理下整体流程,看下整个数据处理过程可以如何进行分组。这个每个阶段使用不同的线程池来处理,提高效率。首先事件分两种

  1. 连接事件 accept动作来处理

  2. 传输事件 select, readsend 动作来处理。


    连接事件处理流程比较固定,无额外逻辑,不需要进一步拆分。传输事件 readsend是相对比较固定的,每个连接的处理逻辑相似,可以放在一个线程池处理。而具体逻辑 decode, logic, encode 各个连接处理逻辑不同。整体可以放在一个线程池处理。


Image

服务端拆分成3部分

  1. reactor部分,统一处理事件,然后根据类型分发

  2. 连接事件分发给acceptor,数据传输事件分发给handler

  3. 如果是数据传输类型,handler read完再交给processorc处理

因为1,2处理都比较快,放在线程池处理,业务逻辑放在另外一个线程池处理。

以上就是大名鼎鼎的reactor高并发模型。

我正在参与掘金技术社区创作者签约计划招募活动

原网站

版权声明
本文为[方丈的寺院]所创,转载请带上原文链接,感谢
https://toutiao.io/k/2woifhp