当前位置:网站首页>从零实现深度学习框架——LSTM从理论到实战【实战】

从零实现深度学习框架——LSTM从理论到实战【实战】

2022-07-05 18:58:00 愤怒的可乐

引言

本着“凡我不能创造的,我就不能理解”的思想,本系列文章会基于纯Python以及NumPy从零创建自己的深度学习框架,该框架类似PyTorch能实现自动求导。

要深入理解深度学习,从零开始创建的经验非常重要,从自己可以理解的角度出发,尽量不使用外部完备的框架前提下,实现我们想要的模型。本系列文章的宗旨就是通过这样的过程,让大家切实掌握深度学习底层实现,而不是仅做一个调包侠。

上篇文章中,我们学习了LSTM的理论部分。并且在RNN的实战部分,我们看到了如何实现多层RNN和双向RNN。同样,这里实现的LSTM也支持多层和双向。

LSTMCell

class LSTMCell(Module):
    def __init__(self, input_size, hidden_size: int, bias: bool = True) -> None:
        super(LSTMCell, self).__init__()
        # 组合了 x->input gate; x-> forget gate; x-> g ; x-> output gate 的线性转换
        self.input_trans = Linear(hidden_size, 4 * hidden_size, bias=bias)
        # 组合了 h->input gate; h-> forget gate; h-> g ; h-> output gate 的线性转换
        self.hidden_trans = Linear(input_size, 4 * hidden_size, bias=bias)

    def forward(self, x: Tensor, h: Tensor, c: Tensor) -> Tuple[Tensor, Tensor]:
        # i: input gate
        # f: forget gate
        # o: output gate
        # g: g_t
        ifgo = self.input_trans(h) + self.hidden_trans(x)
        ifgo = F.chunk(ifgo, 4, -1)
        # 一次性计算三个门 与 g_t
        i, f, g, o = ifgo

        c_next = F.sigmoid(f) * c + F.sigmoid(i) * F.tanh(g)

        h_next = F.sigmoid(o) * F.tanh(c_next)

        return h_next, c_next

在实现上参考了最后面的参考文章,将xh相关的线性变换分开:
i t = Linear x i ( x t ) + Linear h i ( h t − 1 ) f t = Linear x f ( x t ) + Linear h f ( h t − 1 ) g t = Linear x g ( x t ) + Linear h g ( h t − 1 ) o t = Linear x o ( x t ) + Linear h o ( h t − 1 ) (1) \begin{aligned} i_t &= \text{Linear}^i_x(x_t) + \text{Linear}^i_h(h_{t-1}) \\ f_t &= \text{Linear}^f_x(x_t) + \text{Linear}^f_h(h_{t-1}) \\ g_t &= \text{Linear}^g_x(x_t) + \text{Linear}^g_h(h_{t-1}) \\ o_t &= \text{Linear}^o_x(x_t) + \text{Linear}^o_h(h_{t-1}) \\ \end{aligned} \tag{1} itftgtot=Linearxi(xt)+Linearhi(ht1)=Linearxf(xt)+Linearhf(ht1)=Linearxg(xt)+Linearhg(ht1)=Linearxo(xt)+Linearho(ht1)(1)
比如公式 ( 3 ) (3) (3) i t = σ ( U i h t − 1 + W i x t ) i_t = \sigma(U_ih_{t-1} + W_ix_t) it=σ(Uiht1+Wixt) σ \sigma σ的参数部分可以变为:
U i h t − 1 + W i x t ⇒ i t = Linear x i ( x t ) + Linear h i ( h t − 1 ) U_ih_{t-1} + W_ix_t \Rightarrow i_t = \text{Linear}^i_x(x_t) + \text{Linear}^i_h(h_{t-1}) Uiht1+Wixtit=Linearxi(xt)+Linearhi(ht1)
然后我们可以组合类似的线性变换,比如组合 x t x_t xt相关的线性变换: Linear x i ( x t ) , Linear x f ( x t ) , Linear x g ( x t ) , Linear x o ( x t ) \text{Linear}^i_x(x_t),\text{Linear}^f_x(x_t),\text{Linear}^g_x(x_t),\text{Linear}^o_x(x_t) Linearxi(xt),Linearxf(xt),Linearxg(xt),Linearxo(xt)为:

self.input_trans = Linear(hidden_size, 4 * hidden_size, bias=bias)

类似地,hidden_trans同理。这样做的原因是为了加快运算速度,我们只需要做一次线性运算,就可以得到四个结果。

通过

ifgo = self.input_trans(h) + self.hidden_trans(x) \tag 2

得到了这四个重要值的结果,但它们拼接到了一个张量中。然后利用

ifgo = F.chunk(ifgo, 4, -1)

将它们拆分成包含四个值的元组,

i, f, g, o = ifgo

这样我们就得到了相应函数里面的参数值,加上对应的Sigmoid函数或Tanh函数就可以得到我们想要的值。

下一步先计算 c t c_t ct
c t = σ ( f t ) ⊙ c t − 1 + σ ( i t ) ⊙ tanh ⁡ ( g t ) (3) c_t = \sigma(f_t) \odot c_{t-1} + \sigma(i_t) \odot \tanh(g_t) \tag 3 ct=σ(ft)ct1+σ(it)tanh(gt)(3)
对应代码:

c_next = F.sigmoid(f) * c + F.sigmoid(i) * F.tanh(g)

然后根据 o t o_t ot c t c_t ct计算隐藏状态 h t h_t ht
h t = σ ( o t ) ⊙ tanh ⁡ ( c t ) (4) h_t = \sigma(o_t) \odot \tanh(c_t) \tag 4 ht=σ(ot)tanh(ct)(4)
对应代码:

h_next = F.sigmoid(o) * F.tanh(c_next)

LSTM

有了LSTMCell就可以实现完整的LSTM了。

class LSTM(Module):
    def __init__(self, input_size: int, hidden_size: int, batch_first: bool = False, num_layers: int = 1,
                 bidirectional: bool = False, dropout: float = 0):
        super(LSTM, self).__init__()
        self.num_layers = num_layers
        self.hidden_size = hidden_size
        self.batch_first = batch_first
        self.bidirectional = bidirectional

        # 支持多层
        self.cells = ModuleList([LSTMCell(input_size, hidden_size)] +
                                [LSTMCell(hidden_size, hidden_size) for _ in range(num_layers - 1)])

        if self.bidirectional:
            # 支持双向
            self.back_cells = copy.deepcopy(self.cells)

        self.dropout = dropout
        if dropout:
            # Dropout层
            self.dropout_layer = Dropout(dropout)

    def _one_directional_op(self, input, cells, n_steps, hs, cs, reverse=False):
        ''' Args: input: 输入 [n_steps, batch_size, input_size] cells: 正向或反向RNNCell的ModuleList hs: cs: n_steps: 步长 reverse: true 反向 Returns: '''
        output = []
        for t in range(n_steps):
            inp = input[t]

            for layer in range(self.num_layers):
                hs[layer], cs[layer] = cells[layer](inp, hs[layer], cs[layer])
                inp = hs[layer]
                if self.dropout and layer != self.num_layers - 1:
                    inp = self.dropout_layer(inp)

            # 收集最终层的输出
            output.append(hs[-1])

        output = F.stack(output)  # (n_steps, batch_size, num_directions * hidden_size)

        if reverse:
            output = F.flip(output, 0)  # 将输出时间步维度逆序,使得时间步t=0上,是看了整个序列的结果。

        if self.batch_first:
            output = output.transpose((1, 0, 2))

        h_n = F.stack(hs)
        c_n = F.stack(cs)

        return output, (h_n, c_n)

    def forward(self, input: Tensor, state: Optional[Tuple[Tensor, Tensor]] = None):
        ''' Args: input: 形状 [n_steps, batch_size, input_size] 若batch_first=False ;否则形状 [batch_size, n_steps, input_size] state: 元组(h,c) num_directions = 2 if self.bidirectional else 1 h: [num_directions * num_layers, batch_size, hidden_size] c: [num_directions * num_layers, batch_size, hidden_size] Returns: num_directions = 2 if self.bidirectional else 1 output: (n_steps, batch_size, num_directions * hidden_size)若batch_first=False 或 (batch_size, n_steps, num_directions * hidden_size)若batch_first=True 包含每个时间步最后一层(多层RNN)的输出h_t h_n: (num_directions * num_layers, batch_size, hidden_size) 包含最终隐藏状态 c_n: (num_directions * num_layers, batch_size, hidden_size) 包含最终隐藏状态 '''

        h_0, c_0 = None, None
        if state is not None:
            h_0, c_0 = state

        is_batched = input.ndim == 3
        batch_dim = 0 if self.batch_first else 1
        if not is_batched:
            # 转换为批大小为1的输入
            input = input.unsqueeze(batch_dim)
            if state is not None:
                h_0 = h_0.unsqueeze(1)
                c_0 = c_0.unsqueeze(1)

        if self.batch_first:
            batch_size, n_steps, _ = input.shape
            input = input.transpose((1, 0, 2))  # 将batch放到中间维度
        else:
            n_steps, batch_size, _ = input.shape

        if state is None:
            num_directions = 2 if self.bidirectional else 1
            h_0 = Tensor.zeros((self.num_layers * num_directions, batch_size, self.hidden_size), dtype=input.dtype,
                               device=input.device)
            c_0 = Tensor.zeros((self.num_layers * num_directions, batch_size, self.hidden_size), dtype=input.dtype,
                               device=input.device)

        # 得到每层的状态
        hs, cs = list(F.split(h_0)), list(F.split(c_0))

        if not self.bidirectional:
            # 如果是单向的
            output, (h_n, c_n) = self._one_directional_op(input, self.cells, n_steps, hs, cs)
        else:
            output_f, (h_n_f, c_n_f) = self._one_directional_op(input, self.cells, n_steps, hs[:self.num_layers],
                                                                cs[:self.num_layers])

            output_b, (h_n_b, c_n_b) = self._one_directional_op(F.flip(input, 0), self.back_cells, n_steps,
                                                                hs[self.num_layers:], cs[self.num_layers:],
                                                                reverse=True)

            output = F.cat([output_f, output_b], 2)
            h_n = F.cat([h_n_f, h_n_b], 0)
            c_n = F.cat([c_n_f, c_n_b], 0)

        return output, (h_n, c_n)

在多层和双向的实现上和RNN基本一样,其输入输出有些不同。这是由LSTM的架构决定的。

词性标注实战

基于我们上面实现的LSTM来实现该词性标注分类模型,这里同样也叫LSTM:

class LSTM(nn.Module):
    def __init__(self, vocab_size: int, embedding_dim: int, hidden_dim: int, output_dim: int, n_layers: int,
                 dropout: float, bidirectional: bool = False):
        super(LSTM, self).__init__()
        self.embedding = nn.Embedding(vocab_size, embedding_dim)
        self.rnn = nn.LSTM(embedding_dim, hidden_dim, batch_first=True, num_layers=n_layers, dropout=dropout,
                           bidirectional=bidirectional)

        num_directions = 2 if bidirectional else 1
        self.output = nn.Linear(num_directions * hidden_dim, output_dim)

    def forward(self, input: Tensor, hidden: Tensor = None) -> Tensor:
        embeded = self.embedding(input)
        output, _ = self.rnn(embeded, hidden)  # pos tag任务利用的是包含所有时间步的output
        outputs = self.output(output)
        log_probs = F.log_softmax(outputs, axis=-1)
        return log_probs

过程和RNN中的类似,训练代码如下:

embedding_dim = 128
hidden_dim = 128
batch_size = 32
num_epoch = 10
n_layers = 2
dropout = 0.2

# 加载数据
train_data, test_data, vocab, pos_vocab = load_treebank()
train_dataset = RNNDataset(train_data)
test_dataset = RNNDataset(test_data)
train_data_loader = DataLoader(train_dataset, batch_size=batch_size, collate_fn=train_dataset.collate_fn, shuffle=True)
test_data_loader = DataLoader(test_dataset, batch_size=batch_size, collate_fn=test_dataset.collate_fn, shuffle=False)

num_class = len(pos_vocab)

# 加载模型
device = cuda.get_device("cuda:0" if cuda.is_available() else "cpu")
model = LSTM(len(vocab), embedding_dim, hidden_dim, num_class, n_layers, dropout, bidirectional=True)
model.to(device)

# 训练过程
nll_loss = NLLLoss()
optimizer = SGD(model.parameters(), lr=0.1)

model.train()  # 确保应用了dropout
for epoch in range(num_epoch):
    total_loss = 0
    for batch in tqdm(train_data_loader, desc=f"Training Epoch {
      epoch}"):
        inputs, targets, mask = [x.to(device) for x in batch]
        log_probs = model(inputs)
        loss = nll_loss(log_probs[mask], targets[mask])  # 通过bool选择,mask部分不需要计算
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
        total_loss += loss.item()
    print(f"Loss: {
      total_loss:.2f}")

# 测试过程
acc = 0
total = 0
model.eval()  # 不需要dropout
for batch in tqdm(test_data_loader, desc=f"Testing"):
    inputs, targets, mask = [x.to(device) for x in batch]
    with no_grad():
        output = model(inputs)
        acc += (output.argmax(axis=-1).data == targets.data)[mask.data].sum().item()
        total += mask.sum().item()

# 输出在测试集上的准确率
print(f"Acc: {
      acc / total:.2f}")

输出:

Loss: 102.51
Acc: 0.70

同样的配置,测试集上的准确率也是70%,难道需要更多的批次了么。

这里为了演示,只训练了10个批次。

参考

  1. Long Short-Term Memory (LSTM)
原网站

版权声明
本文为[愤怒的可乐]所创,转载请带上原文链接,感谢
https://helloai.blog.csdn.net/article/details/125600972