当前位置:网站首页>Yolov5 adds attention mechanism
Yolov5 adds attention mechanism
2022-07-05 05:17:00 【Master Ma】
YOLOv5 Adding attention mechanism can be divided into the following three steps :
1.common.py Add attention module to
2.yolo.py Add judgment conditions in
3.yaml Add corresponding modules to the file
One 、CBAM Attention mechanism added
(1) stay common.py Add callable CBAM modular
1. open models In folder common.py file 
2. The following CBAMC3 Copy and paste code into common.py In file
class ChannelAttention(nn.Module):
def __init__(self, in_planes, ratio=16):
super(ChannelAttention, self).__init__()
self.avg_pool = nn.AdaptiveAvgPool2d(1)
self.max_pool = nn.AdaptiveMaxPool2d(1)
self.f1 = nn.Conv2d(in_planes, in_planes // ratio, 1, bias=False)
self.relu = nn.ReLU()
self.f2 = nn.Conv2d(in_planes // ratio, in_planes, 1, bias=False)
# Write two , Sequential containers can also be used
# self.sharedMLP = nn.Sequential(
# nn.Conv2d(in_planes, in_planes // ratio, 1, bias=False), nn.ReLU(),
# nn.Conv2d(in_planes // rotio, in_planes, 1, bias=False))
self.sigmoid = nn.Sigmoid()
def forward(self, x):
avg_out = self.f2(self.relu(self.f1(self.avg_pool(x))))
max_out = self.f2(self.relu(self.f1(self.max_pool(x))))
out = self.sigmoid(avg_out + max_out)
return torch.mul(x, out)
class SpatialAttention(nn.Module):
def __init__(self, kernel_size=7):
super(SpatialAttention, self).__init__()
assert kernel_size in (3, 7), 'kernel size must be 3 or 7'
padding = 3 if kernel_size == 7 else 1
self.conv = nn.Conv2d(2, 1, kernel_size, padding=padding, bias=False)
self.sigmoid = nn.Sigmoid()
def forward(self, x):
avg_out = torch.mean(x, dim=1, keepdim=True)
max_out, _ = torch.max(x, dim=1, keepdim=True)
out = torch.cat([avg_out, max_out], dim=1)
out = self.sigmoid(self.conv(out))
return torch.mul(x, out)
class CBAMC3(nn.Module):
# CSP Bottleneck with 3 convolutions
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
super(CBAMC3, self).__init__()
c_ = int(c2 * e) # hidden channels
self.cv1 = Conv(c1, c_, 1, 1)
self.cv2 = Conv(c1, c_, 1, 1)
self.cv3 = Conv(2 * c_, c2, 1)
self.m = nn.Sequential(*[Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)])
self.channel_attention = ChannelAttention(c2, 16)
self.spatial_attention = SpatialAttention(7)
# self.m = nn.Sequential(*[CrossConv(c_, c_, 3, 1, g, 1.0, shortcut) for _ in range(n)])
def forward(self, x):
# The last standard convolution module is changed to the attention mechanism to extract features
return self.spatial_attention(
self.channel_attention(self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), dim=1))))
As shown in the figure below , This article pastes it into common.py At the end of 
(2) towards yolo.py File to add CBAMC3 Judgment statement
1. open models In folder yolo.py file 
2. Respectively in 239 Row sum 245 Line add CBAMC3, As shown in the figure below 
Also remember to click save after the change
3) modify yaml file
Attention mechanisms can be added to backbone,Neck,Head Other parts , You can yaml Modify the structure of the network in the file 、 Add other modules, etc , Next, this article will introduce the backbone network (backbone) add to CBAM Module as an example , This article introduces only one of the ways to add
1. stay yolov5-5.0 Under the project folder , find models Under folder yolov5s.yaml file 
2.backbone In the backbone network 4 individual C3 Module changed to CBAMC3, As shown in the figure below :


So here we are yolov5s Added to the backbone network CBAM Attention mechanism
Next, start training the model , We can see CBAMC3 The module has been successfully added to the backbone network

Two 、SE Attention mechanism added
( Steps and CBAM be similar )
(1) stay common.py Add callable SE modular
1. open models In folder common.py file 
2. The following SE Copy and paste code into common.py In file
class SE(nn.Module):
def __init__(self, c1, c2, r=16):
super(SE, self).__init__()
self.avgpool = nn.AdaptiveAvgPool2d(1)
self.l1 = nn.Linear(c1, c1 // r, bias=False)
self.relu = nn.ReLU(inplace=True)
self.l2 = nn.Linear(c1 // r, c1, bias=False)
self.sig = nn.Sigmoid()
def forward(self, x):
print(x.size())
b, c, _, _ = x.size()
y = self.avgpool(x).view(b, c)
y = self.l1(y)
y = self.relu(y)
y = self.l2(y)
y = self.sig(y)
y = y.view(b, c, 1, 1)
return x * y.expand_as(x)
As shown in the figure below , This article pastes it into common.py At the end of 
(2) towards yolo.py File to add SE Judgment statement
1. open models In folder yolo.py file 
2. Respectively in 238 Row sum 245 Line add SE, As shown in the figure below

Also remember to click save after the change
(3) modify yaml file
Attention mechanisms can be added to backbone,Neck,Head Other parts , You can yaml Modify the structure of the network in the file 、 Add other modules, etc . And CBAM The same process as adding , Next, this article will introduce the backbone network (backbone) add to SE Module as an example , This article introduces only one of the ways to add
1. stay yolov5-5.0 Under the project folder , find models Under folder yolov5s.yaml file 
2.backbone Add the following code at the end of the backbone network , As shown in the figure below :
( Note that commas are in English , And pay attention to alignment )
[-1, 1, SE, [1024, 4]],

So here we are yolov5s Added to the backbone network SE Attention mechanism
( Run the modified code on the server , Remember to click save in the upper right corner of the text editor )
Next, start training the model , We can see SE The module has been successfully added to the backbone network 
3、 ... and 、 Several other attention mechanism codes
The addition process will not be repeated , Imitate the top CBAM and SE The adding process of the
(1)ECA Attention mechanism code
class eca_layer(nn.Module):
"""Constructs a ECA module.
Args:
channel: Number of channels of the input feature map
k_size: Adaptive selection of kernel size
"""
def __init__(self, channel, k_size=3):
super(eca_layer, self).__init__()
self.avg_pool = nn.AdaptiveAvgPool2d(1)
self.conv = nn.Conv1d(1, 1, kernel_size=k_size, padding=(k_size - 1) // 2, bias=False)
self.sigmoid = nn.Sigmoid()
def forward(self, x):
# feature descriptor on the global spatial information
y = self.avg_pool(x)
# Two different branches of ECA module
y = self.conv(y.squeeze(-1).transpose(-1, -2)).transpose(-1, -2).unsqueeze(-1)
# Multi-scale information fusion
y = self.sigmoid(y)
x=x*y.expand_as(x)
return x * y.expand_as(x)
(2)CA Attention mechanism code :
class h_sigmoid(nn.Module):
def __init__(self, inplace=True):
super(h_sigmoid, self).__init__()
self.relu = nn.ReLU6(inplace=inplace)
def forward(self, x):
return self.relu(x + 3) / 6
class h_swish(nn.Module):
def __init__(self, inplace=True):
super(h_swish, self).__init__()
self.sigmoid = h_sigmoid(inplace=inplace)
def forward(self, x):
return x * self.sigmoid(x)
class CoordAtt(nn.Module):
def __init__(self, inp, oup, reduction=32):
super(CoordAtt, self).__init__()
self.pool_h = nn.AdaptiveAvgPool2d((None, 1))
self.pool_w = nn.AdaptiveAvgPool2d((1, None))
mip = max(8, inp // reduction)
self.conv1 = nn.Conv2d(inp, mip, kernel_size=1, stride=1, padding=0)
self.bn1 = nn.BatchNorm2d(mip)
self.act = h_swish()
self.conv_h = nn.Conv2d(mip, oup, kernel_size=1, stride=1, padding=0)
self.conv_w = nn.Conv2d(mip, oup, kernel_size=1, stride=1, padding=0)
def forward(self, x):
identity = x
n, c, h, w = x.size()
x_h = self.pool_h(x)
x_w = self.pool_w(x).permute(0, 1, 3, 2)
y = torch.cat([x_h, x_w], dim=2)
y = self.conv1(y)
y = self.bn1(y)
y = self.act(y)
x_h, x_w = torch.split(y, [h, w], dim=2)
x_w = x_w.permute(0, 1, 3, 2)
a_h = self.conv_h(x_h).sigmoid()
a_w = self.conv_w(x_w).sigmoid()
out = identity * a_w * a_h
return out
reference :https://blog.csdn.net/thy0000/article/details/125016410
边栏推荐
- Research on the value of background repeat of background tiling
- Romance of programmers on Valentine's Day
- [sum of two numbers] 169 sum of two numbers II - enter an ordered array
- 发现一个很好的 Solon 框架试手的教学视频(Solon,轻量级应用开发框架)
- What is the agile proportion of PMP Exam? Dispel doubts
- Es module and commonjs learning notes -- ESM and CJS used in nodejs
- 2022/7/1学习总结
- The difference between heap and stack
- xftp7与xshell7下载(官网)
- cocos_ Lua listview loads too much data
猜你喜欢

Stm32cubemx (8): RTC and RTC wake-up interrupt

Leetcode word search (backtracking method)

Web APIs DOM节点
![To be continued] [UE4 notes] L4 object editing](/img/0f/cfe788f07423222f9eed90f4cece7d.jpg)
To be continued] [UE4 notes] L4 object editing

Bucket sort

C language Essay 1

Use of snippets in vscode (code template)

Data is stored in the form of table

Chinese notes of unit particle system particle effect

小程序直播+電商,想做新零售電商就用它吧!
随机推荐
Basic knowledge points of dictionary
[binary search] 34 Find the first and last positions of elements in a sorted array
Unity intelligent NPC production -- pre judgment walking (method 1)
To the distance we have been looking for -- film review of "flying house journey"
[转]: OSGI规范 深入浅出
[depth first search] 695 Maximum area of the island
win10虚拟机集群优化方案
BUUCTF MISC
Quick sort summary
2022/7/2做题总结
Common technologies of unity
2022上半年全国教师资格证下
小程序直播+电商,想做新零售电商就用它吧!
远程升级怕截胡?详解FOTA安全升级
2022/7/1学习总结
Grail layout and double wing layout
Kali 2018 full image download
使用Room数据库报警告: Schema export directory is not provided to the annotation processor so we cannot expor
Fragment addition failed error lookup
What is the agile proportion of PMP Exam? Dispel doubts