当前位置:网站首页>[combinatorics] recursive equation (solution of linear non-homogeneous recursive equation with constant coefficients | standard form and general solution of recursive equation | proof of general solut
[combinatorics] recursive equation (solution of linear non-homogeneous recursive equation with constant coefficients | standard form and general solution of recursive equation | proof of general solut
2022-07-03 17:13:00 【Programmer community】
List of articles
- One 、 Standard form and general solution of recurrence equation
- Two 、 Proof of general solution of recurrence equation
One 、 Standard form and general solution of recurrence equation
H
(
n
)
−
a
1
H
(
n
−
1
)
−
⋯
−
a
k
H
(
n
−
k
)
=
f
(
n
)
H(n) - a_1H(n-1) - \cdots - a_kH(n-k) = f(n)
H(n)−a1H(n−1)−⋯−akH(n−k)=f(n) ,
n
≥
k
,
a
k
≠
0
,
f
(
n
)
≠
0
n\geq k , a_k\not= 0, f(n) \not= 0
n≥k,ak=0,f(n)=0
The left side of the above equation And “ Linear homogeneous recurrence equation with constant coefficients ” It's the same , But not on the right
0
0
0 , It's based on
n
n
n Of function
f
(
n
)
f(n)
f(n) , This type of recursive equation is called “ Linear Nonhomogeneous recurrence equation with constant coefficients ” ;
Then the general solution of the above recursive equation is as follows :
H
(
n
)
‾
\overline{H(n)}
H(n) Is corresponding to the above recursive equation “ Linear homogeneous recurrence equation with constant coefficients ”
H
(
n
)
−
a
1
H
(
n
−
1
)
−
⋯
−
a
k
H
(
n
−
k
)
=
0
H(n) - a_1H(n-1) - \cdots - a_kH(n-k) = 0
H(n)−a1H(n−1)−⋯−akH(n−k)=0 A general understanding of ,
H
∗
(
n
)
H^*(n)
H∗(n) Is a special solution ,
“ Linear Nonhomogeneous recurrence equation with constant coefficients ” The general solution is
H
(
n
)
=
H
(
n
)
‾
+
H
∗
(
n
)
H(n) = \overline{H(n)} + H^*(n)
H(n)=H(n)+H∗(n)
“ Linear Nonhomogeneous recurrence equation with constant coefficients ” yes “ Linear homogeneous recurrence equation with constant coefficients ” Of Homogeneous general solution , Add a Special solution ;
Linear Nonhomogeneous recurrence equation with constant coefficients :
H
(
n
)
−
a
1
H
(
n
−
1
)
−
⋯
−
a
k
H
(
n
−
k
)
=
f
(
n
)
H(n) - a_1H(n-1) - \cdots - a_kH(n-k) = f(n)
H(n)−a1H(n−1)−⋯−akH(n−k)=f(n)
Linear homogeneous recurrence equation with constant coefficients :
H
(
n
)
−
a
1
H
(
n
−
1
)
−
⋯
−
a
k
H
(
n
−
k
)
=
0
\ \ \ \, H(n) - a_1H(n-1) - \cdots - a_kH(n-k) = 0
H(n)−a1H(n−1)−⋯−akH(n−k)=0
H
∗
(
n
)
H^*(n)
H∗(n) Special solution , Is a specific function that can make the equation equal on both sides ,
take
H
(
n
)
=
H
(
n
)
‾
+
H
∗
(
n
)
H(n) = \overline{H(n)} + H^*(n)
H(n)=H(n)+H∗(n) general solution Substitute into
H
(
n
)
−
a
1
H
(
n
−
1
)
−
⋯
−
a
k
H
(
n
−
k
)
=
f
(
n
)
H(n) - a_1H(n-1) - \cdots - a_kH(n-k) = f(n)
H(n)−a1H(n−1)−⋯−akH(n−k)=f(n) On the left ,
Will bring Top line Of
H
(
n
)
‾
\overline{H(n)}
H(n) Item merge , It must be
0
0
0 ,
Will bring
∗
*
∗ asterisk Of
H
∗
(
n
)
H^*(n)
H∗(n) Item merge , It must be
f
(
n
)
f(n)
f(n) ,
0
+
f
(
n
)
0 + f(n)
0+f(n) The end result is
f
(
n
)
f(n)
f(n) , With right
f
(
n
)
f(n)
f(n) equal ;
Any solution of a recursive equation , It's all one Homogeneous general solution , add A special solution The format of ;
Two 、 Proof of general solution of recurrence equation
prove : General solution of recurrence equation , A certain It's a Homogeneous general solution , add A special solution The format of ;
Recurrence equation :
H
(
n
)
−
a
1
H
(
n
−
1
)
−
⋯
−
a
k
H
(
n
−
k
)
=
f
(
n
)
H(n) - a_1H(n-1) - \cdots - a_kH(n-k) = f(n)
H(n)−a1H(n−1)−⋯−akH(n−k)=f(n) ,
n
≥
k
,
a
k
≠
0
,
f
(
n
)
≠
0
n\geq k , a_k\not= 0, f(n) \not= 0
n≥k,ak=0,f(n)=0
hypothesis
h
(
n
)
h(n)
h(n) Is the general solution of the recursive equation , Prove that
h
(
n
)
h(n)
h(n) It's a Homogeneous general solution , add A special solution The sum of the ;
take
h
(
n
)
h(n)
h(n) Into the above recursive equation ,
①
h
(
n
)
−
a
1
h
(
n
−
1
)
−
⋯
−
a
k
h
(
n
−
k
)
=
f
(
n
)
h(n) - a_1h(n-1) - \cdots - a_kh(n-k) = f(n)
h(n)−a1h(n−1)−⋯−akh(n−k)=f(n)
Special solution
H
∗
(
n
)
H^*(n)
H∗(n) It is also the solution of the recursive equation , take
H
∗
(
n
)
H^*(n)
H∗(n) Into the recursive equation , Both sides are equal ,
②
H
∗
(
n
)
−
a
1
H
∗
(
n
−
1
)
−
⋯
−
a
k
H
∗
(
n
−
k
)
=
f
(
n
)
H^*(n) - a_1H^*(n-1) - \cdots - a_kH^*(n-k) = f(n)
H∗(n)−a1H∗(n−1)−⋯−akH∗(n−k)=f(n)
Put the above ① ② Of two equations The left is subtracted from the left , The right part is subtracted from the right part ,
(
h
(
n
)
−
a
1
h
(
n
−
1
)
−
⋯
−
a
k
h
(
n
−
k
)
)
( h(n) - a_1h(n-1) - \cdots - a_kh(n-k) )
(h(n)−a1h(n−1)−⋯−akh(n−k))
−
-
−
(
H
∗
(
n
)
−
a
1
H
∗
(
n
−
1
)
−
⋯
−
a
k
H
∗
(
n
−
k
)
)
( H^*(n) - a_1H^*(n-1) - \cdots - a_kH^*(n-k) )
(H∗(n)−a1H∗(n−1)−⋯−akH∗(n−k))
=
0
=0
=0
Merge the items in the above formula :
[
h
(
n
)
−
H
∗
(
n
)
]
−
a
1
[
h
(
n
−
1
)
−
H
∗
(
n
−
1
)
]
−
⋯
−
a
k
[
h
(
n
−
k
)
−
H
∗
(
n
−
k
)
]
=
0
[ h(n) - H^*(n) ] - a_1[ h(n-1) - H^*(n-1) ] - \cdots - a_k[ h(n-k) - H^*(n-k) ] = 0
[h(n)−H∗(n)]−a1[h(n−1)−H∗(n−1)]−⋯−ak[h(n−k)−H∗(n−k)]=0
The above equation is homogeneous ,
h
(
n
)
−
H
∗
(
n
)
h(n) - H^*(n)
h(n)−H∗(n) Is the general solution of homogeneous equation ,
that
h
(
n
)
h(n)
h(n) Namely General solution of homogeneous equation And Special solution
H
∗
(
n
)
H^*(n)
H∗(n) Add up ;
therefore
H
(
n
)
=
H
(
n
)
‾
+
H
∗
(
n
)
H(n) = \overline{H(n)} + H^*(n)
H(n)=H(n)+H∗(n) The format must be general ;
边栏推荐
- RedHat 6.2 配置 Zabbix
- Rsync remote synchronization
- Take you to API development by hand
- [mathematical logic] equivalent calculus and reasoning calculus of propositional logic (propositional logic | equivalent calculus | principal conjunctive (disjunctive) paradigm | reasoning calculus)**
- 设计电商秒杀
- Examination questions for the assignment of selected readings of British and American Literature in the course examination of Fujian Normal University in February 2022
- 建立自己的网站(23)
- [combinatorics] recursive equation (characteristic equation and characteristic root | example of characteristic equation | root formula of monadic quadratic equation)
- Electronic Science and technology 20th autumn "Microcomputer Principle and application" online assignment 2 [standard answer]
- 定义一个结构体Fraction,表示分数,用于表示 2/3, 5/6这样的分数
猜你喜欢
Redis:关于列表List类型数据的操作命令
Analysis of variance summary
美团一面:为什么线程崩溃崩溃不会导致 JVM 崩溃
Great changes! National housing prices fell below the 10000 yuan mark
Test your trained model
【RT-Thread】nxp rt10xx 设备驱动框架之--Audio搭建和使用
[JDBC] API parsing
图之深度优先搜索
New library online | cnopendata complete data of Chinese insurance institution outlets
Atom QT 16_ audiorecorder
随机推荐
HP 阵列卡排障一例
When absolutely positioned, the element is horizontally and vertically centered
Deep understanding of grouping sets statements in SQL
ucore概述
Apache服务挂起Asynchronous AcceptEx failed.
Solution to long waiting time of SSH connection to remote host
How SVN views modified file records
Why is WPA3 security of enterprise business so important?
基于主机的入侵系统IDS
MySQL user management
Squid 服务启动脚本
手把手带你入门 API 开发
[2. Basics of Delphi grammar] 2 Object Pascal data type
[combinatorial mathematics] recursive equation (example of recursive equation 2 Hanoi Tower | example of recursive equation 3 insertion sequencing)
Free data | new library online | cnopendata complete data of China's insurance intermediary outlets
免费数据 | 新库上线 | CnOpenData中国保险中介机构网点全集数据
[mathematical logic] equivalent calculus and reasoning calculus of propositional logic (propositional logic | equivalent calculus | principal conjunctive (disjunctive) paradigm | reasoning calculus)**
[combinatorics] recursive equation (general solution structure of recursive equation with multiple roots | linear independent solution | general solution with multiple roots | solution example of recu
Capacités nécessaires à l'analyse des données
27. 输入3个整数,按从大到小的次序输出。要求用指针方法实现。