当前位置:网站首页>Reprint: defect detection technology of industrial components based on deep learning
Reprint: defect detection technology of industrial components based on deep learning
2022-07-06 18:10:00 【Kamigen】
One 、 Dataset shortcomings
1. The sample size of the dataset is small , There's only... In all 117 A sample picture , There are fewer pictures of defect samples . Insufficient data samples easily lead to the fitting phenomenon of the model , Generalization ability is not strong .
2. The pixel size of the picture is 512*512, Large amount of computation . If the image size is compressed or the image is converted to gray-scale image, it may lead to the loss of useful feature information .
Two 、 Data preprocessing
For the above shortcomings , The simplest and most effective method is to expand the sample size of the data set , Generally, geometric transformation is used to increase the training set samples . The commonly used geometric transformation methods are rotation 、 Zoom translation .
1. Rotation and scaling of pictures
use cv2.getRotationMatrix2D Generating transformation matrix M, Reuse warpAffine Apply affine transformation to the picture . In order to generate multiple pictures with different rotation modes , You can set the rotation angle range , And image zoom range , Take random values in the range every time to generate the rotated picture . The code is as follows ( The code only shows ideas , loosely )
# Set image rotation parameters
RotateOrign=(250,250) # Represents the center of rotation
RotateAngle=(60,90) # It means to rotate clockwise 60-90 degree
RotateScale=(0.8,1) # It means that the image will be scaled to the original after rotation 0.8-1 times
# Define the rotation operation function
def Rotate(image,rotateOrign,rotateAngle,rotateScale):
img=cv2.imread(image)
rows,cols=img.shape[:2]
M=cv2.getRotationMatrix2D(rotateOrign,rotateAngle,rotateScale) # Transformation matrix M
dst=cv2.warpAffine(img,M,(rows,cols))
return dst
# Generate pictures
for item in imgList:
for num in range(generateImgNum): #generateImgNum: Number of generated pictures
RotateAngleTmp=random.uniform(RotateAngle[0],RotateAngle[1])
RotateScaleTmp=random.uniform(RotateScale[0],RotateScale[1])
outImg=Rotate(item,RotateOrign,RotateAngleTmp,RotateScaleTmp)
cv2.imwrite(path,outImg)
2. The translation of the picture
First define the translation matrix M, Reuse warpAffine Apply affine transformation to the picture .
# Image translation parameters
MoveX=(50,100) # towards X How many pixel units to move in the direction
MoveY=(-50,50) # towards Y How many pixel units to move in the direction
# Define the translation operation function
def Translate(image,moveX,moveY):
img=cv2.imread(image)
M=np.float32([[1,0,moveX],[0,1,moveY]])
dst=cv2.warpAffine(img,M,img.shape[:2])
return dst
# Generate pictures
for item in imgList:
for num in range(generateImgNum): #generateImgNum: Number of generated pictures
outImg=Translate(item,random.randint(MoveX[0],MoveX[1])
,random.randint(MoveY[0],MoveY[1]))
cv2.imwrite(path,outImg)
In addition to expanding the sample size of the data set through geometric transformation , Common data preprocessing is to extract features from the input image through convolution . Common convolution operations include Gaussian blur and edge detection .
3. Gaussian blur
Gaussian blur , It's also called Gaussian smoothing , It is usually used to reduce image noise and reduce the level of detail ( Baidu Encyclopedia )
use cv2.GaussianBlur Gaussian Blur , The size of Gaussian convolution kernel must be positive and odd .
# Gaussian blur parameter
GaussianBlurkernelSize=5 # The size of Gaussian convolution kernel
GaussianBlurSigma=(0,2) # Gaussian kernel standard deviation range
# Define Gaussian blur function
def GaussianBlur(image,kernelSize,sigma):
img=cv2.imread(image)
Gblur=cv2.GaussianBlur(img,(kernelSize,kernelSize),sigma)
return Gblur
# Blur the picture
for item in imgList:
for num in range(generateImgNum): #generateImgNum: Number of generated pictures
GaussianBlurSigmaTmp=random.randint(GaussianBlurSigma[0],GaussianBlurSigma[1])
outImg=GaussianBlur(item,GaussianBlurkernelSize,GaussianBlurSigmaTmp)
cv2.imwrite(path,outImg)
4. edge detection
Edge detection extracts the edge features of the picture .Canny Images before and after algorithm processing ( The picture is from OpenCV file ):
Several common algorithms of edge detection :Sobel、Laplacian、Canny.
4.1 Sobel
basis : Up and down the pixel 、 The gray weighted difference between the left and right adjacent points , Reach the extreme value at the edge . First pair x Calculate the gradient of the direction and take the absolute value ( There is less than 0 Pixel value ), Right again y Calculate the gradient of the direction and take the absolute value , Finally, the image is mixed and weighted .
sobelx = cv2.Sobel(img,cv2.CV_64F,1,0,ksize=3) #1,0 Indicates that the calculation direction is x
sobelx = cv2.convertScaleAbs(sobelx) # Take the absolute value
sobely = cv2.Sobel(img,cv2.CV_64F,0,1,ksize=3) #0,1 Indicates that the calculation direction is y
sobely = cv2.convertScaleAbs(sobely) # Take the absolute value
sobelxy = cv2.addWeighted(sobelx, 0.5, sobely, 0.5, 0) # Mixed weighting
4.2 Laplacian
basis : Calculate the second derivative , The value at the maximum change is zero, that is, the edge is zero . Direct use cv2.Laplacian Edge detection .
aplacian = cv2.Laplacian(img, cv2.CV_64F,ksize=3)
laplacian = cv2.convertScaleAbs(laplacian)
4.3 Canny
use cv2.Canny Achieve edge detection .Canny Set high threshold and low threshold in the algorithm , The high threshold distinguishes the object to be extracted from the background , Low threshold is used to smooth the contour .
EdgeDetectionThreshold1=25 # Low threshold
EdgeDetectionThreshold2=250 # High threshold
def EdgeDetection(image,threshold1,threshold2,):
img=cv2.imread(image)
edges=cv2.Canny(img,threshold1,threshold2)
return edges
for item in imgList:
outImg=EdgeDetection(item,EdgeDetectionThreshold1,EdgeDetectionThreshold2)
cv2.imwrite(path,outImg)
4.4 Canny Algorithm improvement
reference : An improved adaptive threshold Canny Algorithm
OpenCV Documentation about tradition Canny Introduction of algorithm :Canny Edge Detector
Tradition Canny The realization process of the algorithm :
Image Gaussian filtering . Smooth the image , Eliminate noise .
Calculate the gradient intensity and direction of each pixel in the image .
Apply non maximum suppression . Delete some pixels that are not considered edges , Only candidate edges are preserved .
Apply double threshold detection to determine the edge .
Canny Algorithm improvement :
Use bilateral filtering instead of Gaussian filtering . The kernel function of bilateral filtering is the synthesis result of the kernel of spatial domain and the kernel of pixel domain , At the same time, the spatial domain information and gray similarity are considered , Gaussian filtering only considers the spatial distance between pixels . Bilateral filtering implementation function :cv2.bilateralFilter Realize bilateral filtering ,cv2.adaptiveBilateralFilter Realize adaptive bilateral filtering .
The optimal threshold segmentation method is used to obtain the high threshold , use Otsu Method to determine the low threshold .
————————————————
Copyright notice : This paper is about CSDN Blogger 「 Five six six 」 The original article of , follow CC 4.0 BY-SA Copyright agreement , For reprint, please attach the original source link and this statement .
Link to the original text :https://blog.csdn.net/qq_54000005/article/details/125410538
边栏推荐
- Declval (example of return value of guidance function)
- Jielizhi obtains the customized background information corresponding to the specified dial [chapter]
- Why should Li Shufu personally take charge of building mobile phones?
- Jerry's watch reading setting status [chapter]
- 面向程序员的精品开源字体
- 从交互模型中蒸馏知识!中科大&美团提出VIRT,兼具双塔模型的效率和交互模型的性能,在文本匹配上实现性能和效率的平衡!...
- Transfer data to event object in wechat applet
- kivy教程之在 Kivy 中支持中文以构建跨平台应用程序(教程含源码)
- F200——搭载基于模型设计的国产开源飞控系统无人机
- 编译原理——自上而下分析与递归下降分析构造(笔记)
猜你喜欢

推荐好用的后台管理脚手架,人人开源

李書福為何要親自掛帥造手機?

Open source and safe "song of ice and fire"

Awk command exercise

The easycvr authorization expiration page cannot be logged in. How to solve it?

面向程序员的精品开源字体

30 分钟看懂 PCA 主成分分析

Implementation of queue

Alibaba brand data bank: introduction to the most complete data bank

从交互模型中蒸馏知识!中科大&美团提出VIRT,兼具双塔模型的效率和交互模型的性能,在文本匹配上实现性能和效率的平衡!...
随机推荐
Summary of Android interview questions of Dachang in 2022 (II) (including answers)
std::true_ Type and std:: false_ type
面试突击62:group by 有哪些注意事项?
面向程序员的精品开源字体
Nodejs 开发者路线图 2022 零基础学习指南
MySQL 8 sub database and table backup database shell script
I want to say more about this communication failure
C语言指针*p++、*(p++)、*++p、*(++p)、(*p)++、++(*p)对比实例
1700C - Helping the Nature
Getting started with pytest ----- test case rules
78 岁华科教授逐梦 40 载,国产数据库达梦冲刺 IPO
Interview shock 62: what are the precautions for group by?
Reppoints: advanced order of deformable convolution
Shell input a string of numbers to determine whether it is a mobile phone number
推荐好用的后台管理脚手架,人人开源
Running the service with systemctl in the container reports an error: failed to get D-Bus connection: operation not permitted (solution)
Heavy! Ant open source trusted privacy computing framework "argot", flexible assembly of mainstream technologies, developer friendly layered design
MarkDown语法——更好地写博客
What is the reason why the video cannot be played normally after the easycvr access device turns on the audio?
VR panoramic wedding helps couples record romantic and beautiful scenes