当前位置:网站首页>Reprint: defect detection technology of industrial components based on deep learning
Reprint: defect detection technology of industrial components based on deep learning
2022-07-06 18:10:00 【Kamigen】
One 、 Dataset shortcomings
1. The sample size of the dataset is small , There's only... In all 117 A sample picture , There are fewer pictures of defect samples . Insufficient data samples easily lead to the fitting phenomenon of the model , Generalization ability is not strong .
2. The pixel size of the picture is 512*512, Large amount of computation . If the image size is compressed or the image is converted to gray-scale image, it may lead to the loss of useful feature information .
Two 、 Data preprocessing
For the above shortcomings , The simplest and most effective method is to expand the sample size of the data set , Generally, geometric transformation is used to increase the training set samples . The commonly used geometric transformation methods are rotation 、 Zoom translation .
1. Rotation and scaling of pictures
use cv2.getRotationMatrix2D Generating transformation matrix M, Reuse warpAffine Apply affine transformation to the picture . In order to generate multiple pictures with different rotation modes , You can set the rotation angle range , And image zoom range , Take random values in the range every time to generate the rotated picture . The code is as follows ( The code only shows ideas , loosely )
# Set image rotation parameters
RotateOrign=(250,250) # Represents the center of rotation
RotateAngle=(60,90) # It means to rotate clockwise 60-90 degree
RotateScale=(0.8,1) # It means that the image will be scaled to the original after rotation 0.8-1 times
# Define the rotation operation function
def Rotate(image,rotateOrign,rotateAngle,rotateScale):
img=cv2.imread(image)
rows,cols=img.shape[:2]
M=cv2.getRotationMatrix2D(rotateOrign,rotateAngle,rotateScale) # Transformation matrix M
dst=cv2.warpAffine(img,M,(rows,cols))
return dst
# Generate pictures
for item in imgList:
for num in range(generateImgNum): #generateImgNum: Number of generated pictures
RotateAngleTmp=random.uniform(RotateAngle[0],RotateAngle[1])
RotateScaleTmp=random.uniform(RotateScale[0],RotateScale[1])
outImg=Rotate(item,RotateOrign,RotateAngleTmp,RotateScaleTmp)
cv2.imwrite(path,outImg)
2. The translation of the picture
First define the translation matrix M, Reuse warpAffine Apply affine transformation to the picture .
# Image translation parameters
MoveX=(50,100) # towards X How many pixel units to move in the direction
MoveY=(-50,50) # towards Y How many pixel units to move in the direction
# Define the translation operation function
def Translate(image,moveX,moveY):
img=cv2.imread(image)
M=np.float32([[1,0,moveX],[0,1,moveY]])
dst=cv2.warpAffine(img,M,img.shape[:2])
return dst
# Generate pictures
for item in imgList:
for num in range(generateImgNum): #generateImgNum: Number of generated pictures
outImg=Translate(item,random.randint(MoveX[0],MoveX[1])
,random.randint(MoveY[0],MoveY[1]))
cv2.imwrite(path,outImg)
In addition to expanding the sample size of the data set through geometric transformation , Common data preprocessing is to extract features from the input image through convolution . Common convolution operations include Gaussian blur and edge detection .
3. Gaussian blur
Gaussian blur , It's also called Gaussian smoothing , It is usually used to reduce image noise and reduce the level of detail ( Baidu Encyclopedia )
use cv2.GaussianBlur Gaussian Blur , The size of Gaussian convolution kernel must be positive and odd .
# Gaussian blur parameter
GaussianBlurkernelSize=5 # The size of Gaussian convolution kernel
GaussianBlurSigma=(0,2) # Gaussian kernel standard deviation range
# Define Gaussian blur function
def GaussianBlur(image,kernelSize,sigma):
img=cv2.imread(image)
Gblur=cv2.GaussianBlur(img,(kernelSize,kernelSize),sigma)
return Gblur
# Blur the picture
for item in imgList:
for num in range(generateImgNum): #generateImgNum: Number of generated pictures
GaussianBlurSigmaTmp=random.randint(GaussianBlurSigma[0],GaussianBlurSigma[1])
outImg=GaussianBlur(item,GaussianBlurkernelSize,GaussianBlurSigmaTmp)
cv2.imwrite(path,outImg)
4. edge detection
Edge detection extracts the edge features of the picture .Canny Images before and after algorithm processing ( The picture is from OpenCV file ):
Several common algorithms of edge detection :Sobel、Laplacian、Canny.
4.1 Sobel
basis : Up and down the pixel 、 The gray weighted difference between the left and right adjacent points , Reach the extreme value at the edge . First pair x Calculate the gradient of the direction and take the absolute value ( There is less than 0 Pixel value ), Right again y Calculate the gradient of the direction and take the absolute value , Finally, the image is mixed and weighted .
sobelx = cv2.Sobel(img,cv2.CV_64F,1,0,ksize=3) #1,0 Indicates that the calculation direction is x
sobelx = cv2.convertScaleAbs(sobelx) # Take the absolute value
sobely = cv2.Sobel(img,cv2.CV_64F,0,1,ksize=3) #0,1 Indicates that the calculation direction is y
sobely = cv2.convertScaleAbs(sobely) # Take the absolute value
sobelxy = cv2.addWeighted(sobelx, 0.5, sobely, 0.5, 0) # Mixed weighting
4.2 Laplacian
basis : Calculate the second derivative , The value at the maximum change is zero, that is, the edge is zero . Direct use cv2.Laplacian Edge detection .
aplacian = cv2.Laplacian(img, cv2.CV_64F,ksize=3)
laplacian = cv2.convertScaleAbs(laplacian)
4.3 Canny
use cv2.Canny Achieve edge detection .Canny Set high threshold and low threshold in the algorithm , The high threshold distinguishes the object to be extracted from the background , Low threshold is used to smooth the contour .
EdgeDetectionThreshold1=25 # Low threshold
EdgeDetectionThreshold2=250 # High threshold
def EdgeDetection(image,threshold1,threshold2,):
img=cv2.imread(image)
edges=cv2.Canny(img,threshold1,threshold2)
return edges
for item in imgList:
outImg=EdgeDetection(item,EdgeDetectionThreshold1,EdgeDetectionThreshold2)
cv2.imwrite(path,outImg)
4.4 Canny Algorithm improvement
reference : An improved adaptive threshold Canny Algorithm
OpenCV Documentation about tradition Canny Introduction of algorithm :Canny Edge Detector
Tradition Canny The realization process of the algorithm :
Image Gaussian filtering . Smooth the image , Eliminate noise .
Calculate the gradient intensity and direction of each pixel in the image .
Apply non maximum suppression . Delete some pixels that are not considered edges , Only candidate edges are preserved .
Apply double threshold detection to determine the edge .
Canny Algorithm improvement :
Use bilateral filtering instead of Gaussian filtering . The kernel function of bilateral filtering is the synthesis result of the kernel of spatial domain and the kernel of pixel domain , At the same time, the spatial domain information and gray similarity are considered , Gaussian filtering only considers the spatial distance between pixels . Bilateral filtering implementation function :cv2.bilateralFilter Realize bilateral filtering ,cv2.adaptiveBilateralFilter Realize adaptive bilateral filtering .
The optimal threshold segmentation method is used to obtain the high threshold , use Otsu Method to determine the low threshold .
————————————————
Copyright notice : This paper is about CSDN Blogger 「 Five six six 」 The original article of , follow CC 4.0 BY-SA Copyright agreement , For reprint, please attach the original source link and this statement .
Link to the original text :https://blog.csdn.net/qq_54000005/article/details/125410538
边栏推荐
- TCP packet sticking problem
- 1700C - Helping the Nature
- 面试突击62:group by 有哪些注意事项?
- Cool Lehman has a variety of AI digital human images to create a vr virtual exhibition hall with a sense of technology
- 78 year old professor Huake has been chasing dreams for 40 years, and the domestic database reaches dreams to sprint for IPO
- 【.NET CORE】 请求长度过长报错解决方案
- 【Android】Kotlin代码编写规范化文档
- Declval of template in generic programming
- How to output special symbols in shell
- Pytorch extract middle layer features?
猜你喜欢

Heavy! Ant open source trusted privacy computing framework "argot", flexible assembly of mainstream technologies, developer friendly layered design

Why should Li Shufu personally take charge of building mobile phones?

Comparative examples of C language pointers *p++, * (p++), * ++p, * (++p), (*p) + +, +(*p)

Alibaba brand data bank: introduction to the most complete data bank

李书福为何要亲自挂帅造手机?

The integrated real-time HTAP database stonedb, how to replace MySQL and achieve nearly a hundredfold performance improvement

F200 - UAV equipped with domestic open source flight control system based on Model Design

Take you through ancient Rome, the meta universe bus is coming # Invisible Cities

Getting started with pytest ----- test case rules

带你穿越古罗马,元宇宙巴士来啦 #Invisible Cities
随机推荐
Summary of Android interview questions of Dachang in 2022 (II) (including answers)
编译原理——预测表C语言实现
78 year old professor Huake has been chasing dreams for 40 years, and the domestic database reaches dreams to sprint for IPO
容器里用systemctl运行服务报错:Failed to get D-Bus connection: Operation not permitted(解决方法)
历史上的今天:Google 之母出生;同一天诞生的两位图灵奖先驱
Running the service with systemctl in the container reports an error: failed to get D-Bus connection: operation not permitted (solution)
分布式不来点网关都说不过去
MS-TCT:Inria&SBU提出用于动作检测的多尺度时间Transformer,效果SOTA!已开源!(CVPR2022)...
J'aimerais dire quelques mots de plus sur ce problème de communication...
Wechat applet obtains mobile number
面向程序员的精品开源字体
d绑定函数
微信为什么使用 SQLite 保存聊天记录?
2019阿里集群数据集使用总结
sql语句优化,order by desc速度优化
FMT开源自驾仪 | FMT中间件:一种高实时的分布式日志模块Mlog
Jerry's updated equipment resource document [chapter]
Nodejs developer roadmap 2022 zero foundation Learning Guide
基于STM32+华为云IOT设计的智能路灯
一体化实时 HTAP 数据库 StoneDB,如何替换 MySQL 并实现近百倍性能提升