当前位置:网站首页>Reprint: defect detection technology of industrial components based on deep learning
Reprint: defect detection technology of industrial components based on deep learning
2022-07-06 18:10:00 【Kamigen】
One 、 Dataset shortcomings
1. The sample size of the dataset is small , There's only... In all 117 A sample picture , There are fewer pictures of defect samples . Insufficient data samples easily lead to the fitting phenomenon of the model , Generalization ability is not strong .
2. The pixel size of the picture is 512*512, Large amount of computation . If the image size is compressed or the image is converted to gray-scale image, it may lead to the loss of useful feature information .
Two 、 Data preprocessing
For the above shortcomings , The simplest and most effective method is to expand the sample size of the data set , Generally, geometric transformation is used to increase the training set samples . The commonly used geometric transformation methods are rotation 、 Zoom translation .
1. Rotation and scaling of pictures
use cv2.getRotationMatrix2D Generating transformation matrix M, Reuse warpAffine Apply affine transformation to the picture . In order to generate multiple pictures with different rotation modes , You can set the rotation angle range , And image zoom range , Take random values in the range every time to generate the rotated picture . The code is as follows ( The code only shows ideas , loosely )
# Set image rotation parameters
RotateOrign=(250,250) # Represents the center of rotation
RotateAngle=(60,90) # It means to rotate clockwise 60-90 degree
RotateScale=(0.8,1) # It means that the image will be scaled to the original after rotation 0.8-1 times
# Define the rotation operation function
def Rotate(image,rotateOrign,rotateAngle,rotateScale):
img=cv2.imread(image)
rows,cols=img.shape[:2]
M=cv2.getRotationMatrix2D(rotateOrign,rotateAngle,rotateScale) # Transformation matrix M
dst=cv2.warpAffine(img,M,(rows,cols))
return dst
# Generate pictures
for item in imgList:
for num in range(generateImgNum): #generateImgNum: Number of generated pictures
RotateAngleTmp=random.uniform(RotateAngle[0],RotateAngle[1])
RotateScaleTmp=random.uniform(RotateScale[0],RotateScale[1])
outImg=Rotate(item,RotateOrign,RotateAngleTmp,RotateScaleTmp)
cv2.imwrite(path,outImg)
2. The translation of the picture
First define the translation matrix M, Reuse warpAffine Apply affine transformation to the picture .
# Image translation parameters
MoveX=(50,100) # towards X How many pixel units to move in the direction
MoveY=(-50,50) # towards Y How many pixel units to move in the direction
# Define the translation operation function
def Translate(image,moveX,moveY):
img=cv2.imread(image)
M=np.float32([[1,0,moveX],[0,1,moveY]])
dst=cv2.warpAffine(img,M,img.shape[:2])
return dst
# Generate pictures
for item in imgList:
for num in range(generateImgNum): #generateImgNum: Number of generated pictures
outImg=Translate(item,random.randint(MoveX[0],MoveX[1])
,random.randint(MoveY[0],MoveY[1]))
cv2.imwrite(path,outImg)
In addition to expanding the sample size of the data set through geometric transformation , Common data preprocessing is to extract features from the input image through convolution . Common convolution operations include Gaussian blur and edge detection .
3. Gaussian blur
Gaussian blur , It's also called Gaussian smoothing , It is usually used to reduce image noise and reduce the level of detail ( Baidu Encyclopedia )
use cv2.GaussianBlur Gaussian Blur , The size of Gaussian convolution kernel must be positive and odd .
# Gaussian blur parameter
GaussianBlurkernelSize=5 # The size of Gaussian convolution kernel
GaussianBlurSigma=(0,2) # Gaussian kernel standard deviation range
# Define Gaussian blur function
def GaussianBlur(image,kernelSize,sigma):
img=cv2.imread(image)
Gblur=cv2.GaussianBlur(img,(kernelSize,kernelSize),sigma)
return Gblur
# Blur the picture
for item in imgList:
for num in range(generateImgNum): #generateImgNum: Number of generated pictures
GaussianBlurSigmaTmp=random.randint(GaussianBlurSigma[0],GaussianBlurSigma[1])
outImg=GaussianBlur(item,GaussianBlurkernelSize,GaussianBlurSigmaTmp)
cv2.imwrite(path,outImg)
4. edge detection
Edge detection extracts the edge features of the picture .Canny Images before and after algorithm processing ( The picture is from OpenCV file ):
Several common algorithms of edge detection :Sobel、Laplacian、Canny.
4.1 Sobel
basis : Up and down the pixel 、 The gray weighted difference between the left and right adjacent points , Reach the extreme value at the edge . First pair x Calculate the gradient of the direction and take the absolute value ( There is less than 0 Pixel value ), Right again y Calculate the gradient of the direction and take the absolute value , Finally, the image is mixed and weighted .
sobelx = cv2.Sobel(img,cv2.CV_64F,1,0,ksize=3) #1,0 Indicates that the calculation direction is x
sobelx = cv2.convertScaleAbs(sobelx) # Take the absolute value
sobely = cv2.Sobel(img,cv2.CV_64F,0,1,ksize=3) #0,1 Indicates that the calculation direction is y
sobely = cv2.convertScaleAbs(sobely) # Take the absolute value
sobelxy = cv2.addWeighted(sobelx, 0.5, sobely, 0.5, 0) # Mixed weighting
4.2 Laplacian
basis : Calculate the second derivative , The value at the maximum change is zero, that is, the edge is zero . Direct use cv2.Laplacian Edge detection .
aplacian = cv2.Laplacian(img, cv2.CV_64F,ksize=3)
laplacian = cv2.convertScaleAbs(laplacian)
4.3 Canny
use cv2.Canny Achieve edge detection .Canny Set high threshold and low threshold in the algorithm , The high threshold distinguishes the object to be extracted from the background , Low threshold is used to smooth the contour .
EdgeDetectionThreshold1=25 # Low threshold
EdgeDetectionThreshold2=250 # High threshold
def EdgeDetection(image,threshold1,threshold2,):
img=cv2.imread(image)
edges=cv2.Canny(img,threshold1,threshold2)
return edges
for item in imgList:
outImg=EdgeDetection(item,EdgeDetectionThreshold1,EdgeDetectionThreshold2)
cv2.imwrite(path,outImg)
4.4 Canny Algorithm improvement
reference : An improved adaptive threshold Canny Algorithm
OpenCV Documentation about tradition Canny Introduction of algorithm :Canny Edge Detector
Tradition Canny The realization process of the algorithm :
Image Gaussian filtering . Smooth the image , Eliminate noise .
Calculate the gradient intensity and direction of each pixel in the image .
Apply non maximum suppression . Delete some pixels that are not considered edges , Only candidate edges are preserved .
Apply double threshold detection to determine the edge .
Canny Algorithm improvement :
Use bilateral filtering instead of Gaussian filtering . The kernel function of bilateral filtering is the synthesis result of the kernel of spatial domain and the kernel of pixel domain , At the same time, the spatial domain information and gray similarity are considered , Gaussian filtering only considers the spatial distance between pixels . Bilateral filtering implementation function :cv2.bilateralFilter Realize bilateral filtering ,cv2.adaptiveBilateralFilter Realize adaptive bilateral filtering .
The optimal threshold segmentation method is used to obtain the high threshold , use Otsu Method to determine the low threshold .
————————————————
Copyright notice : This paper is about CSDN Blogger 「 Five six six 」 The original article of , follow CC 4.0 BY-SA Copyright agreement , For reprint, please attach the original source link and this statement .
Link to the original text :https://blog.csdn.net/qq_54000005/article/details/125410538
边栏推荐
- Today in history: the mother of Google was born; Two Turing Award pioneers born on the same day
- 2022暑期项目实训(二)
- 10 advanced concepts that must be understood in learning SQL
- 李书福为何要亲自挂帅造手机?
- 【Android】Kotlin代码编写规范化文档
- Redis的五种数据结构
- Pytest learning ----- pytest operation mode and pre post packaging of interface automation testing
- ADB common commands
- TCP packet sticking problem
- How to solve the error "press any to exit" when deploying multiple easycvr on one server?
猜你喜欢
Jerry's access to additional information on the dial [article]
Awk command exercise
On time and parameter selection of asemi rectifier bridge db207
编译原理——预测表C语言实现
MS-TCT:Inria&SBU提出用于动作检测的多尺度时间Transformer,效果SOTA!已开源!(CVPR2022)...
sql语句优化,order by desc速度优化
Scratch epidemic isolation and nucleic acid detection Analog Electronics Society graphical programming scratch grade examination level 3 true questions and answers analysis June 2022
1700C - Helping the Nature
Jerry's updated equipment resource document [chapter]
Summary of Android interview questions of Dachang in 2022 (II) (including answers)
随机推荐
Selected technical experts from China Mobile, ant, SF, and Xingsheng will show you the guarantee of architecture stability
1700C - Helping the Nature
传统家装有落差,VR全景家装让你体验新房落成效果
MS-TCT:Inria&SBU提出用于动作检测的多尺度时间Transformer,效果SOTA!已开源!(CVPR2022)...
Interview assault 63: how to remove duplication in MySQL?
On time and parameter selection of asemi rectifier bridge db207
2019 Alibaba cluster dataset Usage Summary
Insert dial file of Jerry's watch [chapter]
历史上的今天:Google 之母出生;同一天诞生的两位图灵奖先驱
开源与安全的“冰与火之歌”
There is a gap in traditional home decoration. VR panoramic home decoration allows you to experience the completion effect of your new house
Four processes of program operation
最新财报发布+天猫618双榜第一,耐克蓄力领跑下个50年
TCP packet sticking problem
Redis的五种数据结构
adb常用命令
Growth of operation and maintenance Xiaobai - week 7
带你穿越古罗马,元宇宙巴士来啦 #Invisible Cities
编译原理——预测表C语言实现
偷窃他人漏洞报告变卖成副业,漏洞赏金平台出“内鬼”