当前位置:网站首页>Understanding rotation matrix R from the perspective of base transformation
Understanding rotation matrix R from the perspective of base transformation
2022-07-05 08:54:00 【Li Yingsong~】
In understanding the camera coordinate system , We will definitely touch the camera's external parameter matrix R, It converts coordinates from the world coordinate system to the camera coordinate system :
P c = R ∗ P w + t P_c=R*P_w+t Pc=R∗Pw+t
This is actually a transformation between two coordinate systems , We know R R R A matrix is an orthogonal matrix , So it's 3 Row ( Column ) The vector is 3 A set of orthonormal bases in a vector space , And a set of orthonormal bases can be used as three basis vectors of a coordinate system . So our R R R How does a matrix relate to the basis vectors of two coordinate systems ?
Let's draw two coordinate systems first X w Y w Z w X_wY_wZ_w XwYwZw and X c Y c Z c X_cY_cZ_c XcYcZc:
We're going to talk about how to put a certain point P P P Coordinates in the world coordinate system are converted into coordinates in the camera coordinate system .
Let's not consider the translation between the two coordinate systems , So move the origin of the camera coordinate system to the origin of the world coordinate system , like this :
We can mark the set of basis vectors of two coordinate systems e w ( e ⃗ w x , e ⃗ w y , e ⃗ w z ) e_w(\vec{e}_{wx},\vec{e}_{wy},\vec{e}_{wz}) ew(ewx,ewy,ewz) and e c ( e ⃗ c x , e ⃗ c y , e ⃗ c z ) e_c(\vec{e}_{cx},\vec{e}_{cy},\vec{e}_{cz}) ec(ecx,ecy,ecz). They're all in the world coordinate system .
Next , And how to put a point in the world coordinate system P ( X w , Y w , Z w ) P(X_w,Y_w,Z_w) P(Xw,Yw,Zw) Convert to camera coordinates
P ( X w , Y w , Z w ) → P ( X c , Y w , Z w ) P(X_w,Y_w,Z_w)→P(X_c,Y_w,Z_w) P(Xw,Yw,Zw)→P(Xc,Yw,Zw)
In the world coordinate system , Basis vector set e w ( e ⃗ w x , e ⃗ w y , e ⃗ w z ) e_w(\vec{e}_{wx},\vec{e}_{wy},\vec{e}_{wz}) ew(ewx,ewy,ewz) Is the unit matrix , That is to say

among e ⃗ w x = ( 1 , 0 , 0 ) T \vec{e}_{wx}=(1,0,0)^T ewx=(1,0,0)T, e ⃗ w y = ( 0 , 1 , 0 ) T \vec{e}_{wy}=(0,1,0)^T ewy=(0,1,0)T, e ⃗ w z = ( 0 , 0 , 1 ) T \vec{e}_{wz}=(0,0,1)^T ewz=(0,0,1)T.
We know P P P The coordinates in the world coordinate system are actually a linear combination of the above three sets of basis vectors , namely P w = X w ∗ e ⃗ w x + Y w ∗ e ⃗ w x + Z w ∗ e ⃗ w x P_w=X_w*\vec{e}_{wx}+Y_w*\vec{e}_{wx}+Z_w*\vec{e}_{wx} Pw=Xw∗ewx+Yw∗ewx+Zw∗ewx

This is the base vector representation of coordinates .
So let's take P P P The coordinates of the points are transformed into a set of basis vectors e c ( e ⃗ c x , e ⃗ c y , e ⃗ c z ) e_c(\vec{e}_{cx},\vec{e}_{cy},\vec{e}_{cz}) ec(ecx,ecy,ecz) Then we get the transformation in the camera coordinate system . let me put it another way , We're going to calculate P P P The point is in the base vector set e c ( e ⃗ c x , e ⃗ c y , e ⃗ c z ) e_c(\vec{e}_{cx},\vec{e}_{cy},\vec{e}_{cz}) ec(ecx,ecy,ecz) The coordinates under P c = X c ∗ e ⃗ c x + Y c ∗ e ⃗ c x + Z c ∗ e ⃗ c x P_c=X_c*\vec{e}_{cx}+Y_c*\vec{e}_{cx}+Z_c*\vec{e}_{cx} Pc=Xc∗ecx+Yc∗ecx+Zc∗ecx.
From the perspective of the rotation matrix , The formula is :
P c = R P w P_c=RP_w Pc=RPw
Let's forget for a moment P P P, Let's think about the set of basis vectors e c ( e ⃗ c x , e ⃗ c y , e ⃗ c z ) e_c(\vec{e}_{cx},\vec{e}_{cy},\vec{e}_{cz}) ec(ecx,ecy,ecz) adopt R R R What does a matrix look like in camera coordinates ?
The answer is obvious , It's a unit array E E E.
That is to say, by left multiplying the rotation matrix R R R, We can set the basis vectors e c ( e ⃗ c x , e ⃗ c y , e ⃗ c z ) e_c(\vec{e}_{cx},\vec{e}_{cy},\vec{e}_{cz}) ec(ecx,ecy,ecz) Into a unit matrix E E E, The expression is as follows :
R ( e ⃗ c x , e ⃗ c y , e ⃗ c z ) = E R(\vec{e}_{cx},\vec{e}_{cy},\vec{e}_{cz})=E R(ecx,ecy,ecz)=E
So we know
( e ⃗ c x , e ⃗ c y , e ⃗ c z ) = R − 1 = R T (\vec{e}_{cx},\vec{e}_{cy},\vec{e}_{cz})=R^{-1}=R^T (ecx,ecy,ecz)=R−1=RT
This is our rotation matrix R R R Understanding from the perspective of basis transformation , R R R The inverse matrix ( Or transpose matrix ) Three column vectors of , It is the coordinates of the three base vectors of the camera coordinate system in the world coordinate system .
边栏推荐
- Meta tag details
- Guess riddles (2)
- Golang foundation -- map, array and slice store different types of data
- Use arm neon operation to improve memory copy speed
- Halcon snap, get the area and position of coins
- Beautiful soup parsing and extracting data
- Install the CPU version of tensorflow+cuda+cudnn (ultra detailed)
- [matlab] matlab reads and writes Excel
- C#图像差异对比:图像相减(指针法、高速)
- kubeadm系列-00-overview
猜你喜欢
Typescript hands-on tutorial, easy to understand
Guess riddles (3)
Guess riddles (8)
Wechat H5 official account to get openid climbing account
EA introduction notes
Business modeling of software model | object modeling
TF coordinate transformation of common components of ros-9 ROS
Halcon: check of blob analysis_ Blister capsule detection
Guess riddles (6)
牛顿迭代法(解非线性方程)
随机推荐
EA introduction notes
Beautiful soup parsing and extracting data
Search data in geo database
Mengxin summary of LCs (longest identical subsequence) topics
Numpy pit: after the addition of dimension (n, 1) and dimension (n,) array, the dimension becomes (n, n)
Bit operation related operations
Halcon Chinese character recognition
Halcon wood texture recognition
TF coordinate transformation of common components of ros-9 ROS
Add discount recharge and discount shadow ticket plug-ins to the resource realization applet
Return of missing persons
Yolov4 target detection backbone
uni-app 实现全局变量
[daiy4] jz32 print binary tree from top to bottom
ROS learning 1- create workspaces and function packs
Guess riddles (10)
How to manage the performance of R & D team?
Business modeling of software model | vision
[牛客网刷题 Day4] JZ55 二叉树的深度
Typescript hands-on tutorial, easy to understand