当前位置:网站首页>嘘!异步事件这样用真的好么?
嘘!异步事件这样用真的好么?
2020-11-06 01:33:00 【尹吉欢】
故事背景
今年年初的时候写了一篇文章 《围观:基于事件机制的内部解耦之心路历程》。这篇文章主要讲的是用 ES 数据异构的场景。程序订阅 Mysql Binlog 的变更,然后程序内部使用 Spring Event 来分发具体的事件,因为一个表的数据变更可能会需要更新多个 ES 索引。
为了方便大家理解我把之前方案的图片复制过来了,如下:
上图的方案存在一个问题,就是我们今天文章要聊的内容。
这个问题就是当 MQ Consumer 收到消息后,就直接发布 Event 了,如果是同步的,没有问题。如果某个 EventListener 中处理失败了,那么这条消息将不会 ACK。
如果是异步发布 Event 的场景,发布完消息马上就 ACK 了。就算某个 EventListener 中处理失败了,MQ 也感知不到,不会进行消息的重新投递,这就是存在的问题。
解决方案
方案一
既然消息已经 ACK 了,那就不利用 MQ 的重试功能了,使用方自己重试是不是也可以呢?
可肯定是可以的,内部处理是否成功肯定是可以知道的,如果处理失败了可以默认重试,或者有一定策略的重试。实在不行还可以落库,保存记录。
这样的问题在于太烦了呀,每个使用的地方都要去做这件事情,而且对于未来接手你代码的程序小哥哥来说,这很有可能让小哥哥头发慢慢脱落啊。。。。
脱落不要紧,关键他还不知道要做这个处理,说不定哪天就背锅了,惨兮兮。。。。
方案二
要保证消息和业务处理的一致性,就不能立马进行 ACK 操作。而是要等业务处理完成后再决定是否要 ACK。
如果有处理失败的就不应该 ACK,这样就能复用 MQ 的重试机制了。
分析下来,这就是一个典型的异步转同步的场景。像 Dubbo 中也有这个场景,所以我们可以借鉴 Dubbo 中的实现思路。
创建一个 DefaultFuture 用于同步等待获取任务执行结果。然后在 MQ 消费的地方使用 DefaultFuture。
@Service
@RocketMQMessageListener(topic = "${rocketmq.topic.data_change}", consumerGroup = "${rocketmq.group.data_change_consumer}")
public class DataChangeConsume implements RocketMQListener<DataChangeRequest> {
@Autowired
private ApplicationContext applicationContext;
@Autowired
private CustomApplicationContextAware customApplicationContextAware;
@Override
public void onMessage(DataChangeRequest dataChangeRequest) {
log.info("received message {} , Thread {}", dataChangeRequest, Thread.currentThread().getName());
DataChangeEvent event = new DataChangeEvent(this);
event.setChangeType(dataChangeRequest.getChangeType());
event.setTable(dataChangeRequest.getTable());
event.setMessageId(dataChangeRequest.getMessageId());
DefaultFuture defaultFuture = DefaultFuture.newFuture(dataChangeRequest, customApplicationContextAware.getTaskCount(), 6000 * 10);
applicationContext.publishEvent(event);
Boolean result = defaultFuture.get();
log.info("MessageId {} 处理结果 {}", dataChangeRequest.getMessageId(), result);
if (!result) {
throw new RuntimeException("处理失败,不进行消息ACK,等待下次重试");
}
}
}
newFuture() 会传入事件参数,超时时间,任务数量几个参数。任务数量是用于判断所有 EventListener 是否全部执行完成。
defaultFuture.get(); 这不就会阻塞,等待所有任务执行完成才会返回结果,如果所有业务都处理成功了,那么会返回 true,流程结束,消息自动 ACK。
如果返回了 false 证明有处理失败的或者超时的,就不需要 ACK 了,抛出异常等待重试。
public Boolean get() {
if (isDone()) {
return true;
}
long start = System.currentTimeMillis();
lock.lock();
try {
while (!isDone()) {
done.await(timeout, TimeUnit.MILLISECONDS);
// 有失败的任务反馈
if (!isSuccessDone()) {
return false;
}
// 全部执行成功
if (isDone()) {
return true;
}
// 超时
if (System.currentTimeMillis() - start > timeout) {
return false;
}
}
} catch (InterruptedException e) {
throw new RuntimeException(e);
} finally {
lock.unlock();
}
return true;
}
isDone() 会判断反馈结果了的任务数量跟总数量是否一致,如果一致就说明全部执行完成了。
public boolean isDone() {
return feedbackResultCount.get() == taskCount;
}
那么任务执行完了怎么反馈呢? 不可能让每个使用的方法去关心,所以我们定义了一个切面来做这件事情。
@Aspect
@Component
public class EventListenerAspect {
@Around(value = "@annotation(eventListener)")
public Object aroundAdvice(ProceedingJoinPoint joinpoint, EventListener eventListener) throws Throwable {
DataChangeEvent event = null;
boolean executeResult = true;
try {
event = (DataChangeEvent)joinpoint.getArgs()[0];
Object result = joinpoint.proceed();
return result;
} catch (Exception e) {
executeResult = false;
throw e;
} finally {
DefaultFuture.received(event.getMessageId(), executeResult);
}
}
}
通过 DefaultFuture.received() 反馈执行结果。
public static void received(String id, boolean result) {
DefaultFuture future = FUTURES.get(id);
if (future != null) {
// 累加失败任务数量
if (!result) {
future.feedbackFailResultCount.incrementAndGet();
}
// 累加执行完成任务数量
future.feedbackResultCount.incrementAndGet();
if (future.isDone()) {
FUTURES.remove(id);
future.doReceived();
}
}
}
private void doReceived() {
lock.lock();
try {
if (done != null) {
// 唤醒阻塞的线程
done.signal();
}
} finally {
lock.unlock();
}
}
下面我们来总结整个流程:
- 收到 MQ 消息,组装成 DefaultFuture,通过 get 方法获取执行结果,未执行完的时候此方法阻塞。
- 通过切面切入加了 EventListener 的方法,判断是否有异常来判断任务的执行结果。
- 通过 DefaultFuture.received() 反馈结果。
- 反馈时计算是否全部完成,全部完成则唤醒阻塞的线程。DefaultFuture.get()就能获取到结果。
- 是否要进行 ACK 操作。
需要注意的是每个 EventListener 内部消费的逻辑都要做幂等控制。
源码地址:https://github.com/yinjihuan/kitty-cloud/tree/master/kitty-cloud-mqconsume
关于作者:尹吉欢,简单的技术爱好者,《Spring Cloud 微服务-全栈技术与案例解析》, 《Spring Cloud 微服务 入门 实战与进阶》作者, 公众号 猿天地 发起人。个人微信 jihuan900,欢迎勾搭。
我整理了一份很全的学习资料,感兴趣的可以微信搜索 「猿天地」,回复关键字 「学习资料」获取我整理好了的Spring Cloud,Spring Cloud Alibaba,Sharding-JDBC分库分表,任务调度框架XXL-JOB,MongoDB,爬虫等相关资料。
版权声明
本文为[尹吉欢]所创,转载请带上原文链接,感谢
http://cxytiandi.com/blog/detail/36489
边栏推荐
- 业务策略、业务规则、业务流程和业务主数据之间关系 - modernanalyst
- 谁说Cat不能做链路跟踪的,给我站出来
- 【jmeter】實現介面關聯的兩種方式:正則表示式提取器和json提取器
- Azure Data Factory(三)整合 Azure Devops 實現CI/CD
- 基础知识点整理
- 高级 Vue 组件模式 (3)
- 8.2.2 inject bean (interceptor and filter) into filter through delegatingfilterproxy
- 简直骚操作,ThreadLocal还能当缓存用
- python过滤敏感词记录
- Using tensorflow to forecast the rental price of airbnb in New York City
猜你喜欢
随机推荐
直接保存文件至 Google Drive 并用十倍的速度下载回来
微服務 - 如何解決鏈路追蹤問題
技術總監7年經驗,告訴大家,【拒絕】才是專業
普通算法面试已经Out啦!机器学习算法面试出炉 - kdnuggets
二叉树的常见算法总结
面经手册 · 第15篇《码农会锁,synchronized 解毒,剖析源码深度分析!》
字符串的常见算法总结
什么是无副作用的函数方法?如何取名? - Mario
X Window System介紹
程序员自省清单
被老程式設計師壓榨怎麼辦?我不想辭職
JVM Metaspace内存溢出排查与总结
7.3.2 File Download & big file download
用Python构建和可视化决策树
nlp模型-bert从入门到精通(一)
NodeJs爬虫抓取古代典籍,共计16000个页面心得体会总结及项目分享
从零学习人工智能,开启职业规划之路!
被产品经理怼了,线上出Bug为啥你不知道
Outlier detection based on RNN self encoder
我们编写 React 组件的最佳实践