当前位置:网站首页>CCPC Weihai 2021m eight hundred and ten thousand nine hundred and seventy-five
CCPC Weihai 2021m eight hundred and ten thousand nine hundred and seventy-five
2022-07-05 05:31:00 【solemntee】
The question
the n n n game , win victory m m m game , One of the longest winning streak is k k k, Ask how many situations .
Answer key
consider a n s k ans_k ansk by : the n n n game , win victory m m m game , One of the longest winning streak Greater than or equal to k k k, Ask how many situations .
Because there is n − m n-m n−m Negative fields , So consider the surrounding of each negative field as empty Then insert the victory .
enumeration i i i The continuous length is greater than or equal to k k k Wins , Enumerate the locations of these consecutive wins empty , The number is ( i n − m + 1 ) (^{n-m+1}_{\ \ \ \ \ \ i}) ( in−m+1), Then the next arbitrary allocation can , The number of options is ( n − m n − i k ) (^{n-ik}_{n-m}) (n−mn−ik), so
a n s k = ∑ i = 1 m − i ∗ k > = 0 ( − 1 ) i + 1 ( i n − m + 1 ) ( n − m n − i k ) ans_k=\sum_{i=1}^{m-i*k>=0}(-1)^{i+1}(^{n-m+1}_{\ \ \ \ \ \ i})(^{n-ik}_{n-m}) ansk=i=1∑m−i∗k>=0(−1)i+1( in−m+1)(n−mn−ik)
The final output a n s k + 1 − a n s k ans_{k+1}-ans_k ansk+1−ansk that will do
Special , If you consider generating functions , Enumerate each empty The number of winning fields inside can be made by polynomial fast power , The maximum win is less than or equal to k k k The number of schemes can be determined by
a n s k = ( 1 + x 2 + . . + x k ) n − m + 1 = ( 1 − x k + 1 1 − x ) n − m + 1 ans_k=(1+x^2+..+x^k)^{n-m+1}= (\frac {1-x^k+1} {1-x} )^{n-m+1} ansk=(1+x2+..+xk)n−m+1=(1−x1−xk+1)n−m+1
The number of times is m Expressed by the term coefficient of , Then the answer is a n s k − a n s k − 1 ans_k-ans_{k-1} ansk−ansk−1
#include<bits/stdc++.h>
#define ll long long
using namespace std;
const int mod=998244353;
ll poww(ll a,ll b)
{
ll t=1;
while(b)
{
if(b&1)t=t*a%mod;
a=a*a%mod;
b>>=1;
}
return t;
}
ll P1[300005],P2[300005];
void init()
{
P1[0]=P2[0]=1;
for(int i=1;i<=300000;i++)P1[i]=P1[i-1]*i%mod;
P2[300000]=poww(P1[300000],mod-2);
for(int i=299999;i>=1;i--)P2[i]=P2[i+1]*(i+1)%mod;
}
ll C(ll n,ll m)
{
return P1[n]*P2[m]%mod*P2[n-m]%mod;
}
int main()
{
init();
long long n,m,k;
scanf("%lld%lld%lld",&n,&m,&k);
ll ans=0;
if(k==0)
{
printf("%d\n",m==0);
return 0;
}
for(ll i=1;i*k<=m;i++)
{
if(i&1)ans=(ans+C(n-m+1,i)*C(n-i*k,n-m)%mod)%mod;
else ans=(ans-C(n-m+1,i)*C(n-i*k,n-m)%mod)%mod;
// printf("ans=%lld\n",ans);
}
k++;
for(ll i=1;i*k<=m;i++)
{
if(i&1)ans=(ans-C(n-m+1,i)*C(n-i*k,n-m)%mod)%mod;
else ans=(ans+C(n-m+1,i)*C(n-i*k,n-m)%mod)%mod;
}
printf("%lld",(ans%mod+mod)%mod);
return 0;
}
I don't know why I'm so stupid B B B The title of the game will be stuck ?
边栏推荐
- [to be continued] [UE4 notes] L3 import resources and project migration
- 读者写者模型
- Introduction to tools in TF-A
- Zheng Qing 21 ACM is fun. (3) part of the problem solution and summary
- SSH password free login settings and use scripts to SSH login and execute instructions
- 第六章 数据流建模—课后习题
- Palindrome (csp-s-2021-palin) solution
- 数仓项目的集群脚本
- Little known skills of Task Manager
- How many checks does kubedm series-01-preflight have
猜你喜欢

Double pointer Foundation

Sword finger offer 05 Replace spaces

Talking about JVM (frequent interview)

Sword finger offer 09 Implementing queues with two stacks

浅谈JVM(面试常考)

Yolov5 adds attention mechanism

Palindrome (csp-s-2021-palin) solution

远程升级怕截胡?详解FOTA安全升级
![[to be continued] [UE4 notes] L2 interface introduction](/img/0f/268c852b691bd7459785537f201a41.jpg)
[to be continued] [UE4 notes] L2 interface introduction

Graduation project of game mall
随机推荐
YOLOv5添加注意力機制
Romance of programmers on Valentine's Day
MySQL数据库(一)
How many checks does kubedm series-01-preflight have
Developing desktop applications with electron
Alu logic operation unit
【Jailhouse 文章】Jailhouse Hypervisor
Palindrome (csp-s-2021-palin) solution
剑指 Offer 06.从头到尾打印链表
[depth first search] 695 Maximum area of the island
卷积神经网络简介
Double pointer Foundation
Use of room database
Summary of Haut OJ 2021 freshman week
用STM32点个灯
远程升级怕截胡?详解FOTA安全升级
lxml. etree. XMLSyntaxError: Opening and ending tag mismatch: meta line 6 and head, line 8, column 8
Haut OJ 1221: a tired day
High precision subtraction
[speed pointer] 142 circular linked list II
