当前位置:网站首页>CCPC Weihai 2021m eight hundred and ten thousand nine hundred and seventy-five

CCPC Weihai 2021m eight hundred and ten thousand nine hundred and seventy-five

2022-07-05 05:31:00 solemntee

 Insert picture description here M. 810975

The question

the n n n game , win victory m m m game , One of the longest winning streak is k k k, Ask how many situations .

Answer key

consider a n s k ans_k ansk by : the n n n game , win victory m m m game , One of the longest winning streak Greater than or equal to k k k, Ask how many situations .
Because there is n − m n-m nm Negative fields , So consider the surrounding of each negative field as empty Then insert the victory .
enumeration i i i The continuous length is greater than or equal to k k k Wins , Enumerate the locations of these consecutive wins empty , The number is (        i n − m + 1 ) (^{n-m+1}_{\ \ \ \ \ \ i}) (      inm+1), Then the next arbitrary allocation can , The number of options is ( n − m n − i k ) (^{n-ik}_{n-m}) (nmnik), so
a n s k = ∑ i = 1 m − i ∗ k > = 0 ( − 1 ) i + 1 (        i n − m + 1 ) ( n − m n − i k ) ans_k=\sum_{i=1}^{m-i*k>=0}(-1)^{i+1}(^{n-m+1}_{\ \ \ \ \ \ i})(^{n-ik}_{n-m}) ansk=i=1mik>=0(1)i+1(      inm+1)(nmnik)

The final output a n s k + 1 − a n s k ans_{k+1}-ans_k ansk+1ansk that will do

Special , If you consider generating functions , Enumerate each empty The number of winning fields inside can be made by polynomial fast power , The maximum win is less than or equal to k k k The number of schemes can be determined by
a n s k = ( 1 + x 2 + . . + x k ) n − m + 1 = ( 1 − x k + 1 1 − x ) n − m + 1 ans_k=(1+x^2+..+x^k)^{n-m+1}= (\frac {1-x^k+1} {1-x} )^{n-m+1} ansk=(1+x2+..+xk)nm+1=(1x1xk+1)nm+1
The number of times is m Expressed by the term coefficient of , Then the answer is a n s k − a n s k − 1 ans_k-ans_{k-1} anskansk1

#include<bits/stdc++.h>
#define ll long long
using namespace std;
const int mod=998244353;
ll poww(ll a,ll b)
{
    
    ll t=1;
    while(b)
    {
    
        if(b&1)t=t*a%mod;
        a=a*a%mod;
        b>>=1;
    }
    return t;

}
ll P1[300005],P2[300005];
void init()
{
    
    P1[0]=P2[0]=1;
    for(int i=1;i<=300000;i++)P1[i]=P1[i-1]*i%mod;
    P2[300000]=poww(P1[300000],mod-2);
    for(int i=299999;i>=1;i--)P2[i]=P2[i+1]*(i+1)%mod;
}
ll C(ll n,ll m)
{
    
    return P1[n]*P2[m]%mod*P2[n-m]%mod;
}
int main()
{
    
    init();
    long long n,m,k;
    scanf("%lld%lld%lld",&n,&m,&k);
    ll ans=0;
    if(k==0)
    {
    
        printf("%d\n",m==0);
        return 0;
    }
    for(ll i=1;i*k<=m;i++)
    {
    
        if(i&1)ans=(ans+C(n-m+1,i)*C(n-i*k,n-m)%mod)%mod;
        else ans=(ans-C(n-m+1,i)*C(n-i*k,n-m)%mod)%mod;
// printf("ans=%lld\n",ans);
    }
    k++;
    for(ll i=1;i*k<=m;i++)
    {
    
        if(i&1)ans=(ans-C(n-m+1,i)*C(n-i*k,n-m)%mod)%mod;
        else ans=(ans+C(n-m+1,i)*C(n-i*k,n-m)%mod)%mod;
    }
    printf("%lld",(ans%mod+mod)%mod);

    return 0;
}

I don't know why I'm so stupid B B B The title of the game will be stuck ?

原网站

版权声明
本文为[solemntee]所创,转载请带上原文链接,感谢
https://yzsam.com/2022/02/202202140621452960.html