当前位置:网站首页>【滤波跟踪】基于matlab扩展卡尔曼滤波EKF和无迹卡尔曼滤波UKF比较【含Matlab源码 1933期】
【滤波跟踪】基于matlab扩展卡尔曼滤波EKF和无迹卡尔曼滤波UKF比较【含Matlab源码 1933期】
2022-07-07 09:46:00 【海神之光】
一、获取代码方式
获取代码方式1:
完整代码已上传我的资源:【滤波跟踪】基于matlab扩展卡尔曼滤波EKF和无迹卡尔曼滤波UKF比较【含Matlab源码 1933期】
获取代码方式2:
通过订阅紫极神光博客付费专栏,凭支付凭证,私信博主,可获得此代码。
备注:订阅紫极神光博客付费专栏,可免费获得1份代码(有效期为订阅日起,三天内有效);
二、EKF算法简介
在SLAM问题解决方法中,EKF算法是比较常用的经典算法。机器人的自定位过程是一个非线性化的过程,EKF是为了解决Kalman滤波器不能应用于非线性系统而产生的,该滤波算法的主要过程是预测和更新。在预测和更新过程中,EKF算法对原有的系统方程和观测方程进行线性化并得到一个高估计的结果。如果系统中的非线性很弱,EKF也能给出很好的估计结果。
预测时,使用系统模型如下:
式中,z(k+1)表示的是第k+1步中获得的观测量,W (k+1)表示Kalman增益,其中还包括了前向估计在实际中的权重。
实现EKF-SLAM需要以下几方面内容:系统动态方程以及相应的参量,使用的传感器类型和观测方程,根据这些可以得到EKF的相应形式。二维平面中的EKF-SLAM需要知道机器人在X、Y方向的值,还需要知道二维平面下机器人头部朝向与X轴正方向的夹角。
三、部分源代码
%% 主函数功能:EKF与UKF误差分析,性能比较
%图一:真实状态和EKF滤波状态比较
%图二:真实状态和UKF滤波状态比较
%图三:EKF滤波误差浮动范围
%图四:UKF滤波误差浮动范围
N=150; %仿真时间
L=1;
Q=6; %噪声方差
R=1;
W=sqrtm(Q)*randn(L,N);
V=sqrt(R)*randn(1,N);
X=zeros(L,N);
X(:,1)=[0.1]';
Z=zeros(1,N);
Z(1)=X(:,1)^2/20+V(1);
Xukf=zeros(L,N);
Xukf(:,1)=X(:,1)+sqrtm(Q)*randn(L,1);
Pukf=eye(L);
Xekf=zeros(L,N);
Xekf(:,1)=X(:,1)+sqrtm(Q)*randn(L,1);
Pekf=eye(L);
%算法仿真验证
for k=2:N
X(:,k)=0.5*X(:,k-1)+2.5*X(:,k-1)/(1+X(:,k-1)^2)+8*cos(1.2*k)+W(k);
Z(k)=X(:,k)^2/20+V(k);
[Xekf(:,k),Pekf]=EKF(Xekf(:,k-1),Pekf,Z(k),Q,R,k);
[Xukf(:,k),Pukf]=UKF(Xukf(:,k-1),Pukf,Z(k),Q,R,k);
end
四、运行结果
五、matlab版本及参考文献
1 matlab版本
2014a
2 参考文献
[1] 沈再阳.精通MATLAB信号处理[M].清华大学出版社,2015.
[2]高宝建,彭进业,王琳,潘建寿.信号与系统——使用MATLAB分析与实现[M].清华大学出版社,2020.
[3]王文光,魏少明,任欣.信号处理与系统分析的MATLAB实现[M].电子工业出版社,2018.
[4]林志东.基于扩展卡尔曼滤波算法的SLAM问题分析[J].城市建筑. 2020,17(11)
3 备注
简介此部分摘自互联网,仅供参考,若侵权,联系删除
边栏推荐
- 高考作文,高频提及科技那些事儿……
- 面试被问到了解哪些开发模型?看这一篇就够了
- [encapsulation of time format tool functions]
- Neural approvals to conversational AI (1)
- R语言使用quantile函数计算评分值的分位数(20%、40%、60%、80%)、使用逻辑操作符将对应的分位区间(quantile)编码为分类值生成新的字段、strsplit函数将学生的名和姓拆分
- sink 消费 到 MySQL, 数据库表里面已经设置了 自增主键, flink 里面,如何 操作?
- 毕业季|与青春作伴,一起向未来!
- CentOS系统下Redis安装和自启动配置的步骤
- R語言使用magick包的image_mosaic函數和image_flatten函數把多張圖片堆疊在一起形成堆疊組合圖像(Stack layers on top of each other)
- Use metersphere to keep your testing work efficient
猜你喜欢
随机推荐
Android interview knowledge points
【时间格式工具函数的封装】
【问道】编译原理
[encapsulation of time format tool functions]
Android 面试知识点
sink 消费 到 MySQL, 数据库表里面已经设置了 自增主键, flink 里面,如何 操作?
[system design] index monitoring and alarm system
Graduation season | keep company with youth and look forward to the future together!
LeetCode - 面试题17.24 最大子矩阵
MySQL安装常见报错处理大全
對比學習之 Unsupervised Learning of Visual Features by Contrasting Cluster Assignments
Onedns helps college industry network security
相机标定(1): 单目相机标定及张正友标定基本原理
清华姚班程序员,网上征婚被骂?
CentOS系统下Redis安装和自启动配置的步骤
什么是高内聚、低耦合?
Verilog realizes nixie tube display driver [with source code]
测试优惠券要怎么写测试用例?
Eth trunk link switching delay is too high
La voie du succès de la R & D des entreprises Internet à l’échelle des milliers de personnes