当前位置:网站首页>GGPlot Examples Best Reference
GGPlot Examples Best Reference
2022-07-02 11:50:00 【Xiaoyu 2022】
library(tidyverse)
library(ggpubr)
theme_set(
theme_bw() +
theme(legend.position = "top")
)
library("ggpubr")
p <- ggplot(mtcars, aes(mpg, wt)) +
geom_point() +
geom_smooth(method = lm) +
stat_cor(method = "pearson", label.x = 20)
p

library(tidyverse)
library(ggpubr)
theme_set(
theme_bw() +
theme(legend.position = "top")
)
library(ggforce)
ggplot(iris, aes(Petal.Length, Petal.Width, colour = Species)) +
geom_point() +
facet_zoom(x = Species == "versicolor")

library(tidyverse)
library(ggpubr)
theme_set(
theme_bw() +
theme(legend.position = "top")
)
# Encircle setosa group
library("ggalt")
circle.df <- iris %>% filter(Species == "setosa")
ggplot(iris, aes(Petal.Length, Petal.Width)) +
geom_point(aes(colour = Species)) +
geom_encircle(data = circle.df, linetype = 2)

library(tidyverse)
library(ggpubr)
theme_set(
theme_bw() +
theme(legend.position = "top")
)
# Basic scatter plot
ggplot(mpg, aes(cty, hwy)) +
geom_point(size = 0.5)

library(tidyverse)
library(ggpubr)
theme_set(
theme_bw() +
theme(legend.position = "top")
)
# Jittered points
ggplot(mpg, aes(cty, hwy)) +
geom_jitter(size = 0.5, width = 0.5)

library(tidyverse)
library(ggpubr)
theme_set(
theme_bw() +
theme(legend.position = "top")
)
ggplot(mpg, aes(cty, hwy)) +
geom_count()

library(tidyverse)
library(ggpubr)
theme_set(
theme_bw() +
theme(legend.position = "top")
)
ggplot(mtcars, aes(mpg, wt)) +
geom_point(aes(size = qsec), alpha = 0.5) +
scale_size(range = c(0.5, 12)) # Adjust the range of points size

library(ggpubr)
# Grouped Scatter plot with marginal density plots
ggscatterhist(
iris, x = "Sepal.Length", y = "Sepal.Width",
color = "Species", size = 3, alpha = 0.6,
palette = c("#00AFBB", "#E7B800", "#FC4E07"),
margin.params = list(fill = "Species", color = "black", size = 0.2)
)

library(ggpubr)
# Use box plot as marginal plots
ggscatterhist(
iris, x = "Sepal.Length", y = "Sepal.Width",
color = "Species", size = 3, alpha = 0.6,
palette = c("#00AFBB", "#E7B800", "#FC4E07"),
margin.plot = "boxplot",
ggtheme = theme_bw()
)

# Basic density plot
ggplot(iris, aes(Sepal.Length)) +
geom_density()

# Add mean line
ggplot(iris, aes(Sepal.Length)) +
geom_density(fill = "lightgray") +
geom_vline(aes(xintercept = mean(Sepal.Length)), linetype = 2)

# Change line color by groups
ggplot(iris, aes(Sepal.Length, color = Species)) +
geom_density() +
scale_color_viridis_d()

# Add mean line by groups
mu <- iris %>%
group_by(Species) %>%
summarise(grp.mean = mean(Sepal.Length))
ggplot(iris, aes(Sepal.Length, color = Species)) +
geom_density() +
geom_vline(aes(xintercept = grp.mean, color = Species),
data = mu, linetype = 2) +
scale_color_viridis_d()

# Basic histogram with mean line
ggplot(iris, aes(Sepal.Length)) +
geom_histogram(bins = 20, fill = "white", color = "black") +
geom_vline(aes(xintercept = mean(Sepal.Length)), linetype = 2)

# Add density curves
ggplot(iris, aes(Sepal.Length, stat(density))) +
geom_histogram(bins = 20, fill = "white", color = "black") +
geom_density() +
geom_vline(aes(xintercept = mean(Sepal.Length)), linetype = 2)

ggplot(iris, aes(Sepal.Length)) +
geom_histogram(aes(fill = Species, color = Species), bins = 20,
position = "identity", alpha = 0.5) +
scale_fill_viridis_d() +
scale_color_viridis_d()

library(ggpubr)
ggqqplot(iris, x = "Sepal.Length",
ggtheme = theme_bw())

ggplot(iris, aes(Sepal.Length)) +
stat_ecdf(aes(color = Species)) +
scale_color_viridis_d()

library(ggridges)
ggplot(iris, aes(x = Sepal.Length, y = Species)) +
geom_density_ridges(aes(fill = Species)) +
scale_fill_manual(values = c("#00AFBB", "#E7B800", "#FC4E07"))

df <- mtcars %>%
rownames_to_column() %>%
as_data_frame() %>%
mutate(cyl = as.factor(cyl)) %>%
select(rowname, wt, mpg, cyl)
# Basic bar plots
ggplot(df, aes(x = rowname, y = mpg)) +
geom_col() +
rotate_x_text(angle = 45)

df <- mtcars %>%
rownames_to_column() %>%
as_data_frame() %>%
mutate(cyl = as.factor(cyl)) %>%
select(rowname, wt, mpg, cyl)
# Reorder row names by mpg values
ggplot(df, aes(x = reorder(rowname, mpg), y = mpg)) +
geom_col() +
rotate_x_text(angle = 45)

df <- mtcars %>%
rownames_to_column() %>%
as_data_frame() %>%
mutate(cyl = as.factor(cyl)) %>%
select(rowname, wt, mpg, cyl)
# Horizontal bar plots,
# change fill color by groups and add text labels
ggplot(df, aes(x = reorder(rowname, mpg), y = mpg)) +
geom_col( aes(fill = cyl)) +
geom_text(aes(label = mpg), nudge_y = 2) +
coord_flip() +
scale_fill_viridis_d()

df <- mtcars %>%
rownames_to_column() %>%
as_data_frame() %>%
mutate(cyl = as.factor(cyl)) %>%
select(rowname, wt, mpg, cyl)
df2 <- df %>%
arrange(cyl, mpg) %>%
mutate(rowname = factor(rowname, levels = rowname))
ggplot(df2, aes(x = rowname, y = mpg)) +
geom_col( aes(fill = cyl)) +
scale_fill_viridis_d() +
rotate_x_text(45)

df <- mtcars %>%
rownames_to_column() %>%
as_data_frame() %>%
mutate(cyl = as.factor(cyl)) %>%
select(rowname, wt, mpg, cyl)
df2 <- df %>%
arrange(cyl, mpg) %>%
mutate(rowname = factor(rowname, levels = rowname))
ggplot(df2, aes(x = rowname, y = mpg)) +
geom_segment(
aes(x = rowname, xend = rowname, y = 0, yend = mpg),
color = "lightgray"
) +
geom_point(aes(color = cyl), size = 3) +
scale_color_viridis_d() +
theme_pubclean() +
rotate_x_text(45)

# Data
df3 <- data.frame(supp=rep(c("VC", "OJ"), each=3),
dose=rep(c("D0.5", "D1", "D2"),2),
len=c(6.8, 15, 33, 4.2, 10, 29.5))
# Stacked bar plots of y = counts by x = cut,
# colored by the variable color
ggplot(df3, aes(x = dose, y = len)) +
geom_col(aes(color = supp, fill = supp), position = position_stack()) +
scale_color_manual(values = c("#0073C2FF", "#EFC000FF"))+
scale_fill_manual(values = c("#0073C2FF", "#EFC000FF"))

# Data
df3 <- data.frame(supp=rep(c("VC", "OJ"), each=3),
dose=rep(c("D0.5", "D1", "D2"),2),
len=c(6.8, 15, 33, 4.2, 10, 29.5))
# Use position = position_dodge()
ggplot(df3, aes(x = dose, y = len)) +
geom_col(aes(color = supp, fill = supp), position = position_dodge(0.8), width = 0.7) +
scale_color_manual(values = c("#0073C2FF", "#EFC000FF"))+
scale_fill_manual(values = c("#0073C2FF", "#EFC000FF"))

# Data
df3 <- data.frame(supp=rep(c("VC", "OJ"), each=3),
dose=rep(c("D0.5", "D1", "D2"),2),
len=c(6.8, 15, 33, 4.2, 10, 29.5))
# Line plot
ggplot(df3, aes(x = dose, y = len, group = supp)) +
geom_line(aes(linetype = supp)) +
geom_point(aes(shape = supp))

# Raw data
df <- ToothGrowth %>% mutate(dose = as.factor(dose))
head(df, 3)
# Summary statistics
df.summary <- df %>%
group_by(dose) %>%
summarise(sd = sd(len, na.rm = TRUE), len = mean(len))
df.summary
# (1) Line plot
ggplot(df.summary, aes(dose, len)) +
geom_line(aes(group = 1)) +
geom_errorbar( aes(ymin = len-sd, ymax = len+sd),width = 0.2) +
geom_point(size = 2)

# Raw data
df <- ToothGrowth %>% mutate(dose = as.factor(dose))
head(df, 3)
# Summary statistics
df.summary <- df %>%
group_by(dose) %>%
summarise(sd = sd(len, na.rm = TRUE), len = mean(len))
df.summary
# (2) Bar plot
ggplot(df.summary, aes(dose, len)) +
geom_bar(stat = "identity", fill = "lightgray", color = "black") +
geom_errorbar(aes(ymin = len, ymax = len+sd), width = 0.2)

# Data preparation
df.summary2 <- df %>%
group_by(dose, supp) %>%
summarise( sd = sd(len), len = mean(len))
df.summary2
# (1) Line plot + error bars
ggplot(df.summary2, aes(dose, len)) +
geom_line(aes(linetype = supp, group = supp))+
geom_point()+
geom_errorbar(
aes(ymin = len-sd, ymax = len+sd, group = supp),
width = 0.2
)

# Data preparation
df.summary2 <- df %>%
group_by(dose, supp) %>%
summarise( sd = sd(len), len = mean(len))
df.summary2
# (2) Bar plots + upper error bars.
ggplot(df.summary2, aes(dose, len)) +
geom_bar(aes(fill = supp), stat = "identity",
position = position_dodge(0.8), width = 0.7)+
geom_errorbar(
aes(ymin = len, ymax = len+sd, group = supp),
width = 0.2, position = position_dodge(0.8)
)+
scale_fill_manual(values = c("grey80", "grey30"))

ToothGrowth$dose <- as.factor(ToothGrowth$dose)
# Basic
ggplot(ToothGrowth, aes(dose, len)) +
geom_boxplot()

ToothGrowth$dose <- as.factor(ToothGrowth$dose)
# Box plot + violin plot
ggplot(ToothGrowth, aes(dose, len)) +
geom_violin(trim = FALSE) +
geom_boxplot(width = 0.2)

ToothGrowth$dose <- as.factor(ToothGrowth$dose)
# Add jittered points
ggplot(ToothGrowth, aes(dose, len)) +
geom_boxplot() +
geom_jitter(width = 0.2)

ToothGrowth$dose <- as.factor(ToothGrowth$dose)
# Dot plot + box plot
ggplot(ToothGrowth, aes(dose, len)) +
geom_boxplot() +
geom_dotplot(binaxis = "y", stackdir = "center")

ToothGrowth$dose <- as.factor(ToothGrowth$dose)
# Box plots
ggplot(ToothGrowth, aes(dose, len)) +
geom_boxplot(aes(color = supp)) +
scale_color_viridis_d()

ToothGrowth$dose <- as.factor(ToothGrowth$dose)
# Add jittered points
ggplot(ToothGrowth, aes(dose, len, color = supp)) +
geom_boxplot() +
geom_jitter(position = position_jitterdodge(jitter.width = 0.2)) +
scale_color_viridis_d()

# Data preparation
df <- economics %>%
select(date, psavert, uempmed) %>%
gather(key = "variable", value = "value", -date)
head(df, 3)
# Multiple line plot
ggplot(df, aes(x = date, y = value)) +
geom_line(aes(color = variable), size = 1) +
scale_color_manual(values = c("#00AFBB", "#E7B800")) +
theme_minimal()

library(GGally)
ggpairs(iris[,-5])+ theme_bw()

library(factoextra)
USArrests %>%
scale() %>% # Scale the data
dist() %>% # Compute distance matrix
hclust(method = "ward.D2") %>% # Hierarchical clustering
fviz_dend(cex = 0.5, k = 4, palette = "jco") # Visualize and cut
# into 4 groups

library(ggpubr)
# Data preparation
housetasks <- read.delim(
system.file("demo-data/housetasks.txt", package = "ggpubr"),
row.names = 1
)
head(housetasks, 4)
# Visualization
ggballoonplot(housetasks, fill = "value")+
scale_fill_viridis_c(option = "C")
边栏推荐
- GGHIGHLIGHT: EASY WAY TO HIGHLIGHT A GGPLOT IN R
- Develop scalable contracts based on hardhat and openzeppelin (I)
- b格高且好看的代码片段分享图片生成
- 行業的分析
- Esp32 audio frame esp-adf add key peripheral process code tracking
- 亚马逊云科技 Community Builder 申请窗口开启
- QT获取某个日期是第几周
- 基于Hardhat和Openzeppelin开发可升级合约(一)
- Three transparent LED displays that were "crowded" in 2022
- PgSQL string is converted to array and associated with other tables, which are displayed in the original order after matching and splicing
猜你喜欢

Tdsql | difficult employment? Tencent cloud database micro authentication to help you

ESP32 Arduino 引入LVGL 碰到的一些问题

由粒子加速器产生的反中子形成的白洞

电脑无缘无故黑屏,无法调节亮度。

动态内存(进阶四)

揭露数据不一致的利器 —— 实时核对系统

How to Visualize Missing Data in R using a Heatmap

Esp32 stores the distribution network information +led displays the distribution network status + press the key to clear the distribution network information (source code attached)

How to Create a Nice Box and Whisker Plot in R

Basic usage of MySQL in centos8
随机推荐
JS -- take a number randomly from the array every call, and it cannot be the same as the last time
GGPlot Examples Best Reference
HOW TO CREATE AN INTERACTIVE CORRELATION MATRIX HEATMAP IN R
The selected cells in Excel form have the selection effect of cross shading
【2022 ACTF-wp】
Is the stock account given by qiniu business school safe? Can I open an account?
Never forget, there will be echoes | hanging mirror sincerely invites you to participate in the opensca user award research
【2022 ACTF-wp】
GGPUBR: HOW TO ADD ADJUSTED P-VALUES TO A MULTI-PANEL GGPLOT
[multithreading] the main thread waits for the sub thread to finish executing, and records the way to execute and obtain the execution result (with annotated code and no pit)
MySQL stored procedure cursor traversal result set
HOW TO ADD P-VALUES ONTO A GROUPED GGPLOT USING THE GGPUBR R PACKAGE
PYQT5+openCV项目实战:微循环仪图片、视频记录和人工对比软件(附源码)
Some things configured from ros1 to ros2
File operation (detailed!)
How to Easily Create Barplots with Error Bars in R
Digital transformation takes the lead to resume production and work, and online and offline full integration rebuilds business logic
A sharp tool for exposing data inconsistencies -- a real-time verification system
Implementation of address book (file version)
Map set assignment to database
