当前位置:网站首页>[mathematical logic] normal form (conjunctive normal form | disjunctive normal form | major item | minor item | maximal item | minor item | principal conjunctive normal form | principal disjunctive no
[mathematical logic] normal form (conjunctive normal form | disjunctive normal form | major item | minor item | maximal item | minor item | principal conjunctive normal form | principal disjunctive no
2022-07-03 03:13:00 【Programmer community】
List of articles
- One . Relevant concepts
- 1. Simple Disjunction Syntaxis type
- ( 1 ) Simple conjunction
- ( 2 ) Simple disjunctive
- 2. minterm
- ( 1 ) minterm brief introduction
- ( 2 ) minterm explain
- ( 3 ) Two propositional variables Of minterm
- ( 4 ) Three propositional variables Of minterm
- ( 5 ) minterm True assignment The formula name Between Of conversion And Deduce
- 3. The maximal term
- ( 1 ) The maximal term brief introduction
- ( 2 ) The maximal term explain
- ( 3 ) The maximal term of two propositional variables
- ( 4 ) The maximal term of three propositional variables
- ( 5 ) The maximal term False assignment The formula name Between Of conversion And Deduce
- Two . title
- 1. Use equivalent calculus to find Principal disjunctive normal form and The main conjunctive paradigm
- 2. Use Truth table method seek Principal disjunctive normal form and The main conjunctive paradigm
One . Relevant concepts
1. Simple Disjunction Syntaxis type
( 1 ) Simple conjunction
Simple conjunction :
- 1. form : Propositional argument (
p
p
¬
p
\lnot p
¬p ) ;
p ) or Propositional argument negatives (
- 2. Concept : A limited number Propositional argument Or its Negative form The conjunctive form of composition , be called Simple conjunction ;
- 3. Example :
- ① Single propositional argument :
p
p
p ;
- ② Single propositional argument negatives :
¬
p
\lnot p
¬p
- ③ Two Propositional argument Or its negative form The conjunctive form of composition :
p
∧
¬
q
p \land \lnot q
p∧¬q
- ④ Three Propositional argument Or its negative form The conjunctive form of composition :
p
∧
q
∧
r
p \land q \land r
p∧q∧r
- ① Single propositional argument :
( 2 ) Simple disjunctive
Simple disjunctive :
- 1. form : Propositional argument (
p
p
¬
p
\lnot p
¬p ) ;
p ) or Propositional argument negatives (
- 2. Concept : A limited number Propositional argument Or its Negative form Disjunctive of composition , be called Simple disjunctive ;
- 3. Example :
- ① Single propositional argument :
p
p
p ;
- ② Single propositional argument negatives :
¬
p
\lnot p
¬p
- ③ Two Propositional argument Or its negative form Disjunctive form :
p
∨
¬
q
p \lor \lnot q
p∨¬q
- ④ Three Propositional argument Or its negative form Disjunctive form :
p
∨
q
∨
r
p \lor q \lor r
p∨q∨r
- ① Single propositional argument :
2. minterm
( 1 ) minterm brief introduction
minterm : minterm yes A kind of Simple conjunction ;
- 1. Premise ( Simple conjunction ) : contain
n
n
n individual Propositional variables Of Simple conjunction ;
- 2. The number of occurrence of propositional variables : Each propositional variable all With written words Of form In which , And Only appears once ;
- 3. Where the propositional variable appears : The first
i
i
i (
1
≤
i
≤
n
1 \leq i \leq n
1≤i≤n ) Words appear in From the left The first
i
i
n
n
n It refers to the number of propositional variables ;
i A place ;
- 4. Summary of minor items : Meeting the above three conditions Simple conjunction , be called minterm ;
- 5.
m
i
m_i
mi And
M
i
M_i
¬
m
i
*
M
i
\lnot m_i \iff M_i
¬mi*Mi②
¬
M
i
*
m
i
\lnot M_i \iff m_i
¬Mi*mi
Mi The relationship between :①
( 2 ) minterm explain
About minterm Of explain :
- 1. Number of minimal terms :
n
n
n individual Propositional argument Meeting produce
2
n
2^n
2n individual minterm ;
- 2. Not equal to each other :
2
n
2^n
2n A minimal term all Not equal to each other ;
- 3. minterm :
m
i
m_i
mi Express The first
i
i
i
i
i A minimal term , among
i Is the minimum term True assignment Of Decimal means ;
- 4. Minimal item name : The first
i
i
i A minimal term , be called
m
i
m_i
mi ;
( 3 ) Two propositional variables Of minterm
Two propositional variables
p
,
q
p, q
p,q Of minterm :
- 1. Write first minterm name : from
0
0
0 Start counting ,
m
0
,
m
1
,
m
2
,
m
3
m_0, m_1, m_2, m_3
m0,m1,m2,m3 ;
- 2. Then write the true assignment :
0
,
1
,
2
,
3
0,1,2,3
0,1,2,3 The corresponding binary form , namely
00
,
01
,
10
,
11
00 , 01, 10, 11
00,01,10,11 ;
- 3. Finally, write the formula ( Simple conjunction ) :
- ① Formula form : The formula is simple conjunctive ,
p
∧
q
p \land q
p
,
q
p,q
p,q You may have brought it before Negative sign
¬
\lnot
p∧q , among Each propositional variable
¬ ;
- ② Satisfy the real assignment : The formula needs to meet Its Above
00
,
01
,
10
,
11
00 , 01, 10, 11
00,01,10,11 Assignment is true assignment , That is, assign values according to reality , Deduce its formula ;
- ③ analysis : True assignment by
0
,
0
0,0
0,0 , Conjunction symbol
∧
\land
∧ Both sides should be really , The assignment is 0 , that Corresponding propositional variables Take it with you
¬
\lnot
¬ Symbol ;
- ④ Corresponding : Anyone who
0
0
¬
\lnot
¬ Symbol ; Anyone who
1
1
0 The assignment of , belt
1 The assignment of , Corresponding normal Propositional variables ;
- ① Formula form : The formula is simple conjunctive ,
The formula | True assignment | name |
---|---|---|
¬ p ∧ ¬ q \lnot p \land \lnot q ¬p∧¬q | 0 0 0 \quad 0 00 | m 0 m_0 m0 |
¬ p ∧ q \lnot p \land q ¬p∧q | 0 1 0 \quad 1 01 | m 1 m_1 m1 |
p ∧ ¬ q p \land \lnot q p∧¬q | 1 0 1 \quad 0 10 | m 2 m_2 m2 |
p ∧ q p \land q p∧q | 1 1 1 \quad 1 11 | m 3 m_3 m3 |
( 4 ) Three propositional variables Of minterm
Three propositional variables
p
,
q
,
r
p, q, r
p,q,r Of minterm :
- 1. Write first minterm name : from
0
0
0 Start counting ,
m
0
,
m
1
,
m
2
,
m
3
,
m
4
,
m
5
,
m
6
,
m
7
m_0, m_1, m_2, m_3, m_4, m_5, m_6, m_7
m0,m1,m2,m3,m4,m5,m6,m7 ;
- 2. Then write the true assignment :
0
,
1
,
2
,
3
,
4
,
5
,
6
,
7
0,1,2,3,4,5,6,7
0,1,2,3,4,5,6,7 The corresponding binary form , namely
000
,
001
,
010
,
011
,
100
,
101
,
110
,
111
000 , 001, 010, 011,100, 101, 110, 111
000,001,010,011,100,101,110,111 ;
- 3. Finally, write the formula ( Simple conjunction ) :
- ① Formula form : The formula is simple conjunctive ,
p
∧
q
∧
r
p \land q \land r
p
,
q
,
r
p,q,r
p,q,r You may have brought it before Negative sign
¬
\lnot
p∧q∧r , among Each propositional variable
¬ ;
- ② Satisfy the real assignment : The formula needs to meet Its Above
000
,
001
,
010
,
011
,
100
,
101
,
110
,
111
000 , 001, 010, 011,100, 101, 110, 111
000,001,010,011,100,101,110,111 Assignment is true assignment , That is, assign values according to reality , Deduce its formula ;
- ③ analysis : True assignment by
0
,
0
,
0
0,0,0
0,0,0 , All three propositional variables should be really , The assignment is 0 , Then the corresponding propositional variables should be taken
¬
\lnot
¬ Symbol ;
- ④ Corresponding : Anyone who
0
0
¬
\lnot
¬ Symbol ; Anyone who
1
1
0 The assignment of , belt
1 The assignment of , Corresponding normal Propositional variables ;
- ① Formula form : The formula is simple conjunctive ,
The formula | True assignment | name |
---|---|---|
¬ p ∧ ¬ q ∧ ¬ r \lnot p \land \lnot q \land \lnot r ¬p∧¬q∧¬r | 0 0 0 0 \quad 0 \quad 0 000 | m 0 m_0 m0 |
¬ p ∧ ¬ q ∧ r \lnot p \land \lnot q \land r ¬p∧¬q∧r | 0 0 1 0 \quad 0 \quad 1 001 | m 1 m_1 m1 |
¬ p ∧ q ∧ ¬ r \lnot p \land q \land \lnot r ¬p∧q∧¬r | 0 1 0 0 \quad 1 \quad 0 010 | m 2 m_2 m2 |
¬ p ∧ q ∧ r \lnot p \land q \land r ¬p∧q∧r | 0 1 1 0 \quad 1 \quad 1 011 | m 3 m_3 m3 |
p ∧ ¬ q ∧ ¬ r p \land \lnot q \land \lnot r p∧¬q∧¬r | 1 0 0 1 \quad 0 \quad 0 100 | m 4 m_4 m4 |
p ∧ ¬ q ∧ r p \land \lnot q \land r p∧¬q∧r | 1 0 1 1 \quad 0 \quad 1 101 | m 5 m_5 m5 |
p ∧ q ∧ ¬ r p \land q \land \lnot r p∧q∧¬r | 1 1 0 1 \quad 1 \quad 0 110 | m 6 m_6 m6 |
p ∧ q ∧ r p \land q \land r p∧q∧r | 1 1 1 1 \quad 1 \quad 1 111 | m 7 m_7 m7 |
( 5 ) minterm True assignment The formula name Between Of conversion And Deduce
minterm True assignment The formula name Between Of conversion And Deduce :
- 1. True assignment To The formula Deduction between : The formula Of True assignment list , It's true assignment ; Assign values according to reality Write The formula , 0 Corresponding Propositional variables belt no
¬
\lnot
¬ , 1 Corresponding Normal propositional variables ;
- 2. name To True assignment Between Deduce : This The most simple , Direct will Subscript It's written in Binary form that will do ;
- 3. The formula To name Between Deduce : Direct deduction More difficult , Must pass True assignment Make a transition , Write first True assignment , Then think of it as Binary number To Decimal subscript is enough ;
3. The maximal term
( 1 ) The maximal term brief introduction
The maximal term : The maximal term yes A kind of Simple disjunctive ;
- 1. Premise ( Simple disjunctive ) : contain
n
n
n individual Propositional variables Of Simple disjunctive ;
- 2. The number of occurrence of propositional variables : Each propositional variable all With written words Of form In which , And Only appears once ;
- 3. Where the propositional variable appears : The first
i
i
i (
1
≤
i
≤
n
1 \leq i \leq n
1≤i≤n ) Words appear in From the left The first
i
i
n
n
n It refers to the number of propositional variables ;
i A place ;
- 4. Summary of maximal items : Meeting the above three conditions Simple disjunctive , be called The maximal term ;
( 2 ) The maximal term explain
About The maximal term Of explain :
- 1. The number of maximal terms :
n
n
n individual Propositional argument Meeting produce
2
n
2^n
2n individual The maximal term ;
- 2. Not equal to each other :
2
n
2^n
2n A very large item all Not equal to each other ;
- 3. The maximal term :
m
i
m_i
mi Express The first
i
i
i
i
i A very large item , among
i Is the largest item False assignment Of Decimal means ;
- 4. Maximum item name : The first
i
i
i A very large item , be called
M
i
M_i
Mi ;
- 5.
m
i
m_i
mi And
M
i
M_i
¬
m
i
*
M
i
\lnot m_i \iff M_i
¬mi*Mi②
¬
M
i
*
m
i
\lnot M_i \iff m_i
¬Mi*mi
Mi The relationship between :①
( 3 ) The maximal term of two propositional variables
Two propositional variables
p
,
q
p, q
p,q Of The maximal term :
- 1. Write first The maximal term name : from
0
0
0 Start counting ,
M
0
,
M
1
,
M
2
,
M
3
M_0, M_1, M_2, M_3
M0,M1,M2,M3 ;
- 2. Then write it as a false assignment :
0
,
1
,
2
,
3
0,1,2,3
0,1,2,3 The corresponding binary form , namely
00
,
01
,
10
,
11
00 , 01, 10, 11
00,01,10,11 ;
- 3. Finally, write the formula ( Simple disjunctive ) :
- ① Formula form : The formula is a simple disjunctive ,
p
∧
q
p \land q
p
,
q
p,q
p,q You may have brought it before Negative sign
¬
\lnot
p∧q , among Each propositional variable
¬ ;
- ② Satisfy false assignment : The formula needs to meet Its Above
00
,
01
,
10
,
11
00 , 01, 10, 11
00,01,10,11 Assignment is false assignment , That is, assign value according to false , Deduce its formula ;
- ③ analysis : False assignment by
0
,
0
0,0
0,0 , Conjunction symbol
∧
\land
∧ Both sides should be false , The assignment is 0 , Then the corresponding propositional variable is Normal propositional variables , No negative sign
¬
\lnot
¬ ;
- ④ Corresponding : Anyone who
1
1
¬
\lnot
¬ Symbol ; Anyone who
0
0
1 The assignment of , belt
0 The assignment of , Corresponding normal Propositional variables ;
- ① Formula form : The formula is a simple disjunctive ,
The formula | False assignment | name |
---|---|---|
p ∨ q p \lor q p∨q | 0 0 0 \quad 0 00 | M 0 M_0 M0 |
p ∨ ¬ q p \lor \lnot q p∨¬q | 0 1 0 \quad 1 01 | M 1 M_1 M1 |
¬ p ∨ q \lnot p \lor q ¬p∨q | 1 0 1 \quad 0 10 | M 2 M_2 M2 |
¬ p ∨ ¬ q \lnot p \lor \lnot q ¬p∨¬q | 1 1 1 \quad 1 11 | M 3 M_3 M3 |
( 4 ) The maximal term of three propositional variables
Three propositional variables
p
,
q
,
r
p, q, r
p,q,r Of The maximal term :
- 1. Write first The maximal term name : from
0
0
0 Start counting ,
M
0
,
M
1
,
M
2
,
M
3
,
M
4
,
M
5
,
M
6
,
M
7
M_0, M_1, M_2, M_3, M_4, M_5, M_6, M_7
M0,M1,M2,M3,M4,M5,M6,M7 ;
- 2. Then write it as a false assignment :
0
,
1
,
2
,
3
,
4
,
5
,
6
,
7
0,1,2,3,4,5,6,7
0,1,2,3,4,5,6,7 The corresponding binary form , namely
000
,
001
,
010
,
011
,
100
,
101
,
110
,
111
000 , 001, 010, 011,100, 101, 110, 111
000,001,010,011,100,101,110,111 ;
- 3. Finally, write the formula ( Simple disjunctive ) :
- ① Formula form : The formula is a simple disjunctive ,
p
∧
q
∧
r
p \land q \land r
p
,
q
,
r
p,q,r
p,q,r Before all Probably With Negative sign
¬
\lnot
p∧q∧r , among Each propositional variable
¬ ;
- ② Satisfy false assignment : The formula needs to meet Its Above
000
,
001
,
010
,
011
,
100
,
101
,
110
,
111
000 , 001, 010, 011,100, 101, 110, 111
000,001,010,011,100,101,110,111 Assignment is false assignment , That is, assign values according to reality , Deduce its formula ;
- ③ analysis : False assignment by
0
,
0
,
0
0,0,0
0,0,0 , All three propositional variables should be false , The assignment is 0 , Then the corresponding propositional variable Is a normal propositional variable , No negative sign
¬
\lnot
¬ ;
- ④ Corresponding : Anyone who
1
1
¬
\lnot
¬ Symbol ; Anyone who
0
0
1 The assignment of , belt
0 The assignment of , Corresponding normal Propositional variables ;
- ① Formula form : The formula is a simple disjunctive ,
The formula | False assignment | name |
---|---|---|
p ∨ q ∨ r p \lor q \lor r p∨q∨r | 0 0 0 0 \quad 0 \quad 0 000 | M 0 M_0 M0 |
p ∨ q ∨ ¬ r p \lor q \lor \lnot r p∨q∨¬r | 0 0 1 0 \quad 0 \quad 1 001 | M 1 M_1 M1 |
p ∨ ¬ q ∨ r p \lor \lnot q \lor r p∨¬q∨r | 0 1 0 0 \quad 1 \quad 0 010 | M 2 M_2 M2 |
p ∨ ¬ q ∨ ¬ r p \lor \lnot q \lor \lnot r p∨¬q∨¬r | 0 1 1 0 \quad 1 \quad 1 011 | M 3 M_3 M3 |
¬ p ∨ q ∨ r \lnot p \lor q \lor r ¬p∨q∨r | 1 0 0 1 \quad 0 \quad 0 100 | M 4 M_4 M4 |
¬ p ∨ q ∨ ¬ r \lnot p \lor q \lor \lnot r ¬p∨q∨¬r | 1 0 1 1 \quad 0 \quad 1 101 | M 5 M_5 M5 |
¬ p ∨ ¬ q ∨ r \lnot p \lor \lnot q \lor r ¬p∨¬q∨r | 1 1 0 1 \quad 1 \quad 0 110 | M 6 M_6 M6 |
¬ p ∨ ¬ q ∨ ¬ r \lnot p \lor \lnot q \lor \lnot r ¬p∨¬q∨¬r | 1 1 1 1 \quad 1 \quad 1 111 | M 7 M_7 M7 |
( 5 ) The maximal term False assignment The formula name Between Of conversion And Deduce
The maximal term False assignment The formula name Between Of conversion And Deduce :
- 1. False assignment To The formula Deduction between : The formula Of False assignment list , Is false assignment ; Assign value according to false Write The formula ,
1
1
1 Corresponding Propositional variables belt no
¬
\lnot
¬ ,
0
0
0 Corresponding Normal propositional variables ;
- 2. name To False assignment Between Deduce : This The most simple , Direct will Subscript It's written in Binary form that will do ;
- 3. The formula To name Between Deduce : Direct deduction More difficult , Must pass False assignment Make a transition , Write first False assignment , Then think of it as Binary number To Decimal subscript is enough ;
Two . title
1. Use equivalent calculus to find Principal disjunctive normal form and The main conjunctive paradigm
subject : Use equivalent calculus to find Principal disjunctive normal form and The main conjunctive paradigm ;
- Conditions :
A
=
(
p
→
¬
q
)
→
r
A = (p \rightarrow \lnot q) \rightarrow r
A=(p→¬q)→r
- problem 1 : seek Principal disjunctive normal form and The LORD takes normal form ;
answer :
① step One : Find a conjunctive normal form :
(
p
→
¬
q
)
→
r
(p \rightarrow \lnot q) \rightarrow r
(p→¬q)→r
( Use implication equivalence :
A
→
B
*
¬
A
∨
B
A \rightarrow B \iff \lnot A \lor B
A→B*¬A∨B , eliminate The outer Implication symbol )
*
¬
(
p
→
¬
q
)
∨
r
\iff \lnot (p \rightarrow \lnot q) \lor r
*¬(p→¬q)∨r
( Use implication equivalence :
A
→
B
*
¬
A
∨
B
A \rightarrow B \iff \lnot A \lor B
A→B*¬A∨B , Eliminate the inner Implication symbol )
*
¬
(
¬
p
∨
¬
q
)
∨
r
\iff \lnot (\lnot p \lor \lnot q) \lor r
*¬(¬p∨¬q)∨r
( Use De Morgan's law :
¬
(
A
∨
B
)
*
¬
A
∧
¬
B
\lnot (A \lor B) \iff \lnot A \land \lnot B
¬(A∨B)*¬A∧¬B , Handle
¬
(
¬
p
∨
¬
q
)
\lnot (\lnot p \lor \lnot q)
¬(¬p∨¬q) part )
*
(
p
∧
q
)
∨
r
\iff ( p \land q) \lor r
*(p∧q)∨r
( Use exchange rate :
A
∨
B
*
B
∨
A
A \lor B \iff B \lor A
A∨B*B∨A )
*
r
∨
(
p
∧
q
)
\iff r \lor ( p \land q)
*r∨(p∧q)
( Use allocation rate :
A
∨
(
B
∧
C
)
*
(
A
∨
B
)
∧
(
A
∨
C
)
A \lor (B \land C) \iff (A \lor B) \land (A \lor C)
A∨(B∧C)*(A∨B)∧(A∨C) )
*
(
r
∨
p
)
∧
(
r
∨
q
)
\iff (r \lor p) \land (r \lor q)
*(r∨p)∧(r∨q)
( Use exchange rate :
A
∨
B
*
B
∨
A
A \lor B \iff B \lor A
A∨B*B∨A )
*
(
p
∨
r
)
∧
(
q
∨
r
)
\iff (p \lor r) \land (q \lor r)
*(p∨r)∧(q∨r)
Current situation analysis :
- 1> Conjunctive paradigm : here ,
(
p
∨
r
)
∧
(
q
∨
r
)
(p \lor r) \land (q \lor r)
(p∨r)∧(q∨r) It is a conjunctive paradigm , According to the conjunctive paradigm Ask the Lord to take normal form ;
- 2> Split : Separately
(
p
∨
r
)
(p \lor r)
(p∨r) and
(
q
∨
r
)
(q \lor r)
(q∨r) To The maximal term ;
② Step two : take
(
p
∨
r
)
(p \lor r)
(p∨r) To The main conjunctive paradigm :
(
p
∨
r
)
(p \lor r)
(p∨r)
( Use Law of zero :
A
∨
0
*
A
A \lor 0 \iff A
A∨0*A , disjunction , Disjunction one
0
0
0 after , Its value remains unchanged )
*
(
p
∨
0
∨
r
)
\iff (p \lor 0 \lor r)
*(p∨0∨r)
( Use Law of contradiction :
A
∧
A
=
0
A \land A = 0
A∧A=0 , introduce Propositional argument
q
q
q , That is to use
A
∧
A
A \land A
A∧A Replace In the formula
0
0
0 )
*
(
p
∨
(
q
∧
¬
q
)
∨
r
)
\iff (p \lor ( q \land \lnot q ) \lor r)
*(p∨(q∧¬q)∨r)
( Use the commutative law
A
∨
B
*
B
∨
A
A \lor B \iff B \lor A
A∨B*B∨A and Associative law
(
A
∨
B
)
∨
C
*
A
∨
(
B
∨
C
)
(A \lor B) \lor C \iff A \lor (B \lor C)
(A∨B)∨C*A∨(B∨C) )
*
(
(
p
∨
r
)
∨
(
q
∧
¬
q
)
)
\iff ( ( p \lor r ) \lor ( q \land \lnot q ) )
*((p∨r)∨(q∧¬q))
( Use the law of distribution :
A
∨
(
B
∧
C
)
*
(
A
∧
B
)
∨
(
A
∧
C
)
A \lor (B \land C) \iff (A \land B) \lor (A \land C)
A∨(B∧C)*(A∧B)∨(A∧C) , take
p
,
q
,
r
p,q,r
p,q,r All assembled into a disjunctive )
*
(
p
∨
r
∨
q
)
∧
(
p
∨
r
∨
¬
q
)
\iff (p \lor r \lor q) \land (p \lor r \lor \lnot q)
*(p∨r∨q)∧(p∨r∨¬q)
( Use the commutative law )
*
(
p
∨
q
∨
r
)
∧
(
p
∨
¬
q
∨
r
)
\iff (p \lor q \lor r) \land (p \lor \lnot q \lor r)
*(p∨q∨r)∧(p∨¬q∨r)
according to The maximal term The formula Write the corresponding serial number :
- 1>
(
p
∨
q
∨
r
)
(p \lor q \lor r)
0
0
0
0 \quad 0 \quad 0
000 , Is a maximal term
M
0
M_0
M0 ;
(p∨q∨r) : False assignment
- 2>
(
p
∨
¬
q
∨
r
)
(p \lor \lnot q \lor r)
0
1
0
0 \quad 1 \quad 0
010 , Is a maximal term
M
2
M_2
M2 ;
(p∨¬q∨r) : False assignment
- 3>
(
p
∨
r
)
(p \lor r)
(
p
∨
q
∨
r
)
∧
(
p
∨
¬
q
∨
r
)
*
M
0
∧
M
2
(p \lor q \lor r) \land (p \lor \lnot q \lor r) \iff M_0 \land M_2
(p∨q∨r)∧(p∨¬q∨r)*M0∧M2
(p∨r) Corresponding The principal conjunctive paradigm is :
③ Step three : take
(
q
∨
r
)
(q \lor r)
(q∨r) To The main conjunctive paradigm :
(
q
∨
r
)
(q \lor r)
(q∨r)
( Use Law of zero :
A
∨
0
*
A
A \lor 0 \iff A
A∨0*A , disjunction , Disjunction one
0
0
0 after , Its value remains unchanged )
*
(
0
∨
q
∨
r
)
\iff (0 \lor q \lor r)
*(0∨q∨r)
( Use Law of contradiction :
A
∧
A
=
0
A \land A = 0
A∧A=0 , introduce Propositional argument
q
q
q , That is to use
A
∧
A
A \land A
A∧A Replace In the formula
0
0
0 )
*
(
(
p
∧
¬
p
)
∨
q
∨
r
)
\iff (( p \land \lnot p ) \lor q \lor r)
*((p∧¬p)∨q∨r)
( Use the law of distribution :
A
∨
(
B
∧
C
)
*
(
A
∧
B
)
∨
(
A
∧
C
)
A \lor (B \land C) \iff (A \land B) \lor (A \land C)
A∨(B∧C)*(A∧B)∨(A∧C) , take
p
,
q
,
r
p,q,r
p,q,r All assembled into a disjunctive )
*
(
p
∨
r
∨
q
)
∧
(
¬
p
∨
r
∨
q
)
\iff (p \lor r \lor q) \land (\lnot p \lor r \lor q)
*(p∨r∨q)∧(¬p∨r∨q)
according to The maximal term The formula Write the corresponding serial number :
- 1>
(
p
∨
q
∨
r
)
(p \lor q \lor r)
0
0
0
0 \quad 0 \quad 0
000 , Is a maximal term
M
0
M_0
M0 ;
(p∨q∨r) : False assignment
- 2>
(
¬
p
∨
q
∨
r
)
(\lnot p \lor q \lor r)
1
0
0
1 \quad 0 \quad 0
100 , Is a maximal term
M
4
M_4
M4 ;
(¬p∨q∨r) : False assignment
- 3>
(
p
∨
r
)
(p \lor r)
(
p
∨
q
∨
r
)
∧
(
¬
p
∨
q
∨
r
)
*
M
0
∧
M
4
(p \lor q \lor r) \land (\lnot p \lor q \lor r) \iff M_0 \land M_4
(p∨q∨r)∧(¬p∨q∨r)*M0∧M4
(p∨r) Corresponding The principal conjunctive paradigm is :
The final result of this topic :
(
p
→
¬
q
)
(p \rightarrow \lnot q)
(p→¬q)
( Step one Conclusion )
*
(
p
∨
r
)
∧
(
q
∨
r
)
\iff (p \lor r) \land (q \lor r)
*(p∨r)∧(q∨r)
( Move step two and Step three The result is substituted into the above formula )
*
(
M
0
∧
M
2
)
∧
(
M
0
∧
M
4
)
\iff (M_0 \land M_2) \land (M_0 \land M_4)
*(M0∧M2)∧(M0∧M4)
( According to the law of Union You can eliminate the brackets take
M
0
∧
M
0
M_0 \land M_0
M0∧M0 combined )
*
(
M
0
∧
M
0
)
∧
M
2
∧
M
4
\iff ( M_0 \land M_0 ) \land M_2 \land M_4
*(M0∧M0)∧M2∧M4
( according to Idempotent law :
A
∧
A
*
A
A \land A \iff A
A∧A*A , Can be eliminated One
M
0
M_0
M0 )
*
M
0
∧
M
2
∧
M
4
\iff M_0 \land M_2 \land M_4
*M0∧M2∧M4
2. Use Truth table method seek Principal disjunctive normal form and The main conjunctive paradigm
subject : Use Truth table method seek Principal disjunctive normal form and The main conjunctive paradigm ;
- Conditions :
A
=
(
p
→
¬
q
)
→
r
A = (p \rightarrow \lnot q) \rightarrow r
A=(p→¬q)→r
- problem 1 : seek Principal disjunctive normal form and The LORD takes normal form ;
answer :
① First, list the truth table ( The more detailed the truth table of the column, the better , Miscalculation several times )
p q r p \quad q \quad r pqr | ( ¬ q ) (\lnot q) (¬q) | ( p → ¬ q ) (p \rightarrow \lnot q) (p→¬q) | A = ( p → ¬ q ) → r A=(p \rightarrow \lnot q) \rightarrow r A=(p→¬q)→r | minterm | The maximal term |
---|---|---|---|---|---|
0 0 0 0 \quad 0 \quad 0 000 | 1 1 1 | 1 1 1 | 0 0 0 | m 0 m_0 m0 | M 0 M_0 M0 |
0 0 1 0 \quad 0 \quad 1 001 | 1 1 1 | 1 1 1 | 1 1 1 | m 1 m_1 m1 | M 1 M_1 M1 |
0 1 0 0 \quad 1 \quad 0 010 | 0 0 0 | 1 1 1 | 0 0 0 | m 2 m_2 m2 | M 2 M_2 M2 |
0 1 1 0 \quad 1 \quad 1 011 | 0 0 0 | 1 1 1 | 1 1 1 | m 3 m_3 m3 | M 3 M_3 M3 |
1 0 0 1 \quad 0 \quad 0 100 | 1 1 1 | 1 1 1 | 0 0 0 | m 4 m_4 m4 | M 4 M_4 M4 |
1 0 1 1 \quad 0 \quad 1 101 | 1 1 1 | 1 1 1 | 1 1 1 | m 5 m_5 m5 | M 5 M_5 M5 |
1 1 0 1 \quad 1 \quad 0 110 | 0 0 0 | 0 0 0 | 1 1 1 | m 6 m_6 m6 | M 6 M_6 M6 |
1 1 1 1 \quad 1 \quad 1 111 | 0 0 0 | 0 0 0 | 1 1 1 | m 7 m_7 m7 | M 7 M_7 M7 |
② Truth table The value is really The item Corresponding minterm
m
i
m_i
mi constitute Principal disjunctive normal form ;
m
1
∨
m
3
∨
m
5
∨
m
6
∨
m
7
m_1 \lor m_3 \lor m_5 \lor m_6 \lor m_7
m1∨m3∨m5∨m6∨m7
③ Truth table The value is false The item Corresponding The maximal term
m
i
m_i
mi constitute The main conjunctive paradigm ;
M
0
∧
M
2
∧
M
4
M_0 \land M_2 \land M_4
M0∧M2∧M4
minterm - Combined type - True assignment - Corresponding to
1
1
1 - Principal disjunctive normal form ( Disjunctive form of multiple conjunctive forms )
The maximal term - disjunction - False assignment - Corresponding to
0
0
0 - The main conjunctive paradigm ( Conjunctive of multiple disjunctions )
边栏推荐
- PHP constructor with parameters - PHP constructor with a parameter
- MySQL practice 45 [SQL query and update execution process]
- Update and return document in mongodb - update and return document in mongodb
- MySql实战45讲【全局锁和表锁】
- BigVision代码
- [algebraic structure] group (definition of group | basic properties of group | proof method of group | commutative group)
- Yiwen takes you to know ZigBee
- [C language] MD5 encryption for account password
- Bigvision code
- 基于Qt的yolov5工程
猜你喜欢
随机推荐
3D drawing example
一文带你了解 ZigBee
Introduction to cron expression
PAT乙级“1104 天长地久”DFS优化思路
VS code配置虚拟环境
[C language] MD5 encryption for account password
About HTTP cache control
docker安装mysql
Agile certification (professional scrum Master) simulation exercise-2
Basic information of Promethus (I)
ComponentScan和ComponentScans的区别
The idea setting code is in UTF-8 idea Properties configuration file Chinese garbled
[combinatorics] Application of exponential generating function (multiple set arrangement problem | different balls in different boxes | derivation of exponential generating function of odd / even sequ
Deep learning: multi-layer perceptron and XOR problem (pytoch Implementation)
Opengauss database development and debugging tool guide
解决高并发下System.currentTimeMillis卡顿
Vs 2019 configuration du moteur de génération de tensorrt
Force deduction ----- the minimum path cost in the grid
Vs 2019 installation and configuration opencv
Idea set method call ignore case