当前位置:网站首页>[Deep Learning 21 Days Learning Challenge] Memo: What does our neural network model look like? - detailed explanation of model.summary()
[Deep Learning 21 Days Learning Challenge] Memo: What does our neural network model look like? - detailed explanation of model.summary()
2022-08-04 06:05:00 【Live up to [email protected]】
活动地址:CSDN21天学习挑战赛
学完手写识别和服装分类,Want to stop for a while to digest what I've learned,也总结一下,今天就从keras的model.summary()
Let's start the output!
1、model.summary()是什么
构建深度学习模型,我们会通过model.summary()
输出模型各层的参数状况,Have we had just learned model as an example:
这里可以看出,model.summary()
打印出的内容,is the same as the hierarchical relationship in which we build the model,Clothing classification model as an example:
#Build model code
model = models.Sequential([
layers.Conv2D(32, (3, 3), activation='relu', input_shape=(28, 28, 1)), #卷积层1,卷积核3*3
layers.MaxPooling2D((2, 2)), #池化层1,2*2采样
layers.Conv2D(64, (3, 3), activation='relu'), #卷积层2,卷积核3*3
layers.MaxPooling2D((2, 2)), #池化层2,2*2采样
layers.Conv2D(64, (3, 3), activation='relu'), #卷积层3,卷积核3*3
layers.Flatten(), #Flatten层,连接卷积层与全连接层
layers.Dense(64, activation='relu'), #全连接层,特征进一步提取
layers.Dense(10) #输出层,输出预期结果
])
2、model.summary()输出含义
Still take the clothing classification model as an example:
Model: "sequential_2"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
conv2d_6 (Conv2D) (None, 26, 26, 32) 320
#创建: layers.Conv2D(32, (3, 3), activation='relu', input_shape=(28, 28, 1)), #卷积层1,卷积核3*3
_________________________________________________________________
max_pooling2d_4 (MaxPooling2 (None, 13, 13, 32) 0
#创建:layers.MaxPooling2D((2, 2)), #池化层1,2*2采样
_________________________________________________________________
conv2d_7 (Conv2D) (None, 11, 11, 64) 18496
#创建:layers.Conv2D(64, (3, 3), activation='relu'), #卷积层2,卷积核3*3
_________________________________________________________________
max_pooling2d_5 (MaxPooling2 (None, 5, 5, 64) 0
#创建:layers.MaxPooling2D((2, 2)), #池化层2,2*2采样
_________________________________________________________________
conv2d_8 (Conv2D) (None, 3, 3, 64) 36928
#创建:layers.Conv2D(64, (3, 3), activation='relu'), #卷积层3,卷积核3*3
_________________________________________________________________
flatten_2 (Flatten) (None, 576) 0
#创建:layers.Flatten(), #Flatten层,连接卷积层与全连接层
_________________________________________________________________
dense_4 (Dense) (None, 64) 36928
#创建:layers.Dense(64, activation='relu'), #全连接层,特征进一步提取
_________________________________________________________________
dense_5 (Dense) (None, 10) 650
#创建:layers.Dense(10) #输出层,输出预期结果
=================================================================
Total params: 93,322
Trainable params: 93,322
Non-trainable params: 0
_________________________________________________________________
Param:该层输入参数个数, So how did this number come about??
a、The formula for calculating the number of parameters of the convolution layer:(卷积核长度*卷积核宽度*通道数+1)*卷积核个数
例:
第一个卷积层:(3*3*1+1)*32 = 320
第二个卷积层:(3*3*32+1)*64 = 18496
第三个卷积层:(3*3*64+1)*64 = 36928
b、The formula for calculating the number of parameters of the fully connected layer:
(输入数据维度+1)* 神经元个数
例:
Fully connected layer before the output layer:(64+1)*10=650
这里之所以要加1,Because every neuron has a偏置(Bias)
.Output Shape :The output data shape of this layer
Total params: Total number of model parameters,
The parameters of each layer are accumulated
Trainable params: 模型可训练参数
Non-trainable params:Model untrainable parameters
3、Understand the shape model process
通过model.summary(),Let's look at this picture again,就清楚多了
版权声明
本文为[Live up to [email protected]]所创,转载请带上原文链接,感谢
https://yzsam.com/2022/216/202208040525326927.html
边栏推荐
猜你喜欢
对象存储-分布式文件系统-MinIO-2:服务端部署
攻防世界MISC—MISCall
对象存储-分布式文件系统-MinIO-1:概念
ThinkPHP5.0.x 反序列化分析
sklearn中的pipeline机制
(十四)平衡二叉树
[Deep Learning 21 Days Learning Challenge] 1. My handwriting was successfully recognized by the model - CNN implements mnist handwritten digit recognition model study notes
【深度学习21天学习挑战赛】0、搭建学习环境
多项式回归(PolynomialFeatures)
CAS与自旋锁、ABA问题
随机推荐
Jupyter Notebook installed library;ModuleNotFoundError: No module named 'plotly' solution.
TensorFlow2 study notes: 5. Common activation functions
二月、三月校招面试复盘总结(一)
简单说Q-Q图;stats.probplot(QQ图)
RecyclerView的用法
Vulnhub:Sar-1
flink-sql所有表格式format
ReentrantLock(公平锁、非公平锁)可重入锁原理
组原模拟题
攻防世界MISC—MISCall
sklearn中的学习曲线learning_curve函数
Android connects to mysql database using okhttp
Kubernetes集群安装
flink on yarn指定第三方jar包
(五)栈及其应用
逻辑回归---简介、API简介、案例:癌症分类预测、分类评估法以及ROC曲线和AUC指标
剑指 Offer 2022/7/8
(TensorFlow)——tf.variable_scope和tf.name_scope详解
Androd Day02
【深度学习21天学习挑战赛】1、我的手写被模型成功识别——CNN实现mnist手写数字识别模型学习笔记