当前位置:网站首页>GGPUBR: HOW TO ADD ADJUSTED P-VALUES TO A MULTI-PANEL GGPLOT
GGPUBR: HOW TO ADD ADJUSTED P-VALUES TO A MULTI-PANEL GGPLOT
2022-07-02 11:50:00 【Xiaoyu 2022】
# Load required R packages
library(ggpubr)
library(rstatix)
# Data preparation
df <- tibble::tribble(
~sample_type, ~expression, ~cancer_type, ~gene,
"cancer", 25.8, "Lung", "Gene1",
"cancer", 25.5, "Liver", "Gene1",
"cancer", 22.4, "Liver", "Gene1",
"cancer", 21.2, "Lung", "Gene1",
"cancer", 24.5, "Liver", "Gene1",
"cancer", 27.3, "Liver", "Gene1",
"cancer", 30.9, "Liver", "Gene1",
"cancer", 17.6, "Breast", "Gene1",
"cancer", 19.7, "Lung", "Gene1",
"cancer", 9.7, "Breast", "Gene1",
"cancer", 15.2, "Breast", "Gene2",
"cancer", 26.4, "Liver", "Gene2",
"cancer", 25.8, "Lung", "Gene2",
"cancer", 9.7, "Breast", "Gene2",
"cancer", 21.2, "Lung", "Gene2",
"cancer", 24.5, "Liver", "Gene2",
"cancer", 14.5, "Breast", "Gene2",
"cancer", 19.7, "Lung", "Gene2",
"cancer", 25.2, "Lung", "Gene2",
"normal", 43.5, "Lung", "Gene1",
"normal", 76.5, "Liver", "Gene1",
"normal", 21.9, "Breast", "Gene1",
"normal", 69.9, "Liver", "Gene1",
"normal", 101.7, "Liver", "Gene1",
"normal", 80.1, "Liver", "Gene1",
"normal", 19.2, "Breast", "Gene1",
"normal", 49.5, "Lung", "Gene1",
"normal", 34.5, "Breast", "Gene1",
"normal", 51.9, "Lung", "Gene1",
"normal", 67.5, "Lung", "Gene2",
"normal", 30, "Breast", "Gene2",
"normal", 76.5, "Liver", "Gene2",
"normal", 88.5, "Liver", "Gene2",
"normal", 69.9, "Liver", "Gene2",
"normal", 49.5, "Lung", "Gene2",
"normal", 80.1, "Liver", "Gene2",
"normal", 79.2, "Liver", "Gene2",
"normal", 12.6, "Breast", "Gene2",
"normal", 97.5, "Liver", "Gene2",
"normal", 64.5, "Liver", "Gene2"
)
# Summary statistics
df %>%
group_by(gene, cancer_type, sample_type) %>%
get_summary_stats(expression, type = "common")
# Statistical test
# group the data by cancer type and gene
# Compare expression values of normal and cancer samples
stat.test <- df %>%
group_by(cancer_type, gene) %>%
t_test(expression ~ sample_type) %>%
adjust_pvalue(method = "bonferroni") %>%
add_significance()
stat.test
# Create boxplot
bxp <- ggboxplot(
df, x = "sample_type", y = "expression",
facet.by = c("gene", "cancer_type")
) +
rotate_x_text(angle = 60)
# Add adjusted p-values
stat.test <- stat.test %>% add_xy_position(x = "sample_type")
bxp + stat_pvalue_manual(stat.test, label = "p.adj")
# Load required R packages
library(ggpubr)
library(rstatix)
# Data preparation
df <- tibble::tribble(
~sample_type, ~expression, ~cancer_type, ~gene,
"cancer", 25.8, "Lung", "Gene1",
"cancer", 25.5, "Liver", "Gene1",
"cancer", 22.4, "Liver", "Gene1",
"cancer", 21.2, "Lung", "Gene1",
"cancer", 24.5, "Liver", "Gene1",
"cancer", 27.3, "Liver", "Gene1",
"cancer", 30.9, "Liver", "Gene1",
"cancer", 17.6, "Breast", "Gene1",
"cancer", 19.7, "Lung", "Gene1",
"cancer", 9.7, "Breast", "Gene1",
"cancer", 15.2, "Breast", "Gene2",
"cancer", 26.4, "Liver", "Gene2",
"cancer", 25.8, "Lung", "Gene2",
"cancer", 9.7, "Breast", "Gene2",
"cancer", 21.2, "Lung", "Gene2",
"cancer", 24.5, "Liver", "Gene2",
"cancer", 14.5, "Breast", "Gene2",
"cancer", 19.7, "Lung", "Gene2",
"cancer", 25.2, "Lung", "Gene2",
"normal", 43.5, "Lung", "Gene1",
"normal", 76.5, "Liver", "Gene1",
"normal", 21.9, "Breast", "Gene1",
"normal", 69.9, "Liver", "Gene1",
"normal", 101.7, "Liver", "Gene1",
"normal", 80.1, "Liver", "Gene1",
"normal", 19.2, "Breast", "Gene1",
"normal", 49.5, "Lung", "Gene1",
"normal", 34.5, "Breast", "Gene1",
"normal", 51.9, "Lung", "Gene1",
"normal", 67.5, "Lung", "Gene2",
"normal", 30, "Breast", "Gene2",
"normal", 76.5, "Liver", "Gene2",
"normal", 88.5, "Liver", "Gene2",
"normal", 69.9, "Liver", "Gene2",
"normal", 49.5, "Lung", "Gene2",
"normal", 80.1, "Liver", "Gene2",
"normal", 79.2, "Liver", "Gene2",
"normal", 12.6, "Breast", "Gene2",
"normal", 97.5, "Liver", "Gene2",
"normal", 64.5, "Liver", "Gene2"
)
# Summary statistics
df %>%
group_by(gene, cancer_type, sample_type) %>%
get_summary_stats(expression, type = "common")
# Statistical test
# group the data by cancer type and gene
# Compare expression values of normal and cancer samples
stat.test <- df %>%
group_by(cancer_type, gene) %>%
t_test(expression ~ sample_type) %>%
adjust_pvalue(method = "bonferroni") %>%
add_significance()
stat.test
# Create boxplot
bxp <- ggboxplot(
df, x = "sample_type", y = "expression",
facet.by = c("gene", "cancer_type")
) +
rotate_x_text(angle = 60)
# Add adjusted p-values
stat.test <- stat.test %>% add_xy_position(x = "sample_type")
bxp + stat_pvalue_manual(stat.test, label = "p.adj.signif")
# Load required R packages
library(ggpubr)
library(rstatix)
# Data preparation
df <- tibble::tribble(
~sample_type, ~expression, ~cancer_type, ~gene,
"cancer", 25.8, "Lung", "Gene1",
"cancer", 25.5, "Liver", "Gene1",
"cancer", 22.4, "Liver", "Gene1",
"cancer", 21.2, "Lung", "Gene1",
"cancer", 24.5, "Liver", "Gene1",
"cancer", 27.3, "Liver", "Gene1",
"cancer", 30.9, "Liver", "Gene1",
"cancer", 17.6, "Breast", "Gene1",
"cancer", 19.7, "Lung", "Gene1",
"cancer", 9.7, "Breast", "Gene1",
"cancer", 15.2, "Breast", "Gene2",
"cancer", 26.4, "Liver", "Gene2",
"cancer", 25.8, "Lung", "Gene2",
"cancer", 9.7, "Breast", "Gene2",
"cancer", 21.2, "Lung", "Gene2",
"cancer", 24.5, "Liver", "Gene2",
"cancer", 14.5, "Breast", "Gene2",
"cancer", 19.7, "Lung", "Gene2",
"cancer", 25.2, "Lung", "Gene2",
"normal", 43.5, "Lung", "Gene1",
"normal", 76.5, "Liver", "Gene1",
"normal", 21.9, "Breast", "Gene1",
"normal", 69.9, "Liver", "Gene1",
"normal", 101.7, "Liver", "Gene1",
"normal", 80.1, "Liver", "Gene1",
"normal", 19.2, "Breast", "Gene1",
"normal", 49.5, "Lung", "Gene1",
"normal", 34.5, "Breast", "Gene1",
"normal", 51.9, "Lung", "Gene1",
"normal", 67.5, "Lung", "Gene2",
"normal", 30, "Breast", "Gene2",
"normal", 76.5, "Liver", "Gene2",
"normal", 88.5, "Liver", "Gene2",
"normal", 69.9, "Liver", "Gene2",
"normal", 49.5, "Lung", "Gene2",
"normal", 80.1, "Liver", "Gene2",
"normal", 79.2, "Liver", "Gene2",
"normal", 12.6, "Breast", "Gene2",
"normal", 97.5, "Liver", "Gene2",
"normal", 64.5, "Liver", "Gene2"
)
# Summary statistics
df %>%
group_by(gene, cancer_type, sample_type) %>%
get_summary_stats(expression, type = "common")
# Statistical test
# group the data by cancer type and gene
# Compare expression values of normal and cancer samples
stat.test <- df %>%
group_by(cancer_type, gene) %>%
t_test(expression ~ sample_type) %>%
adjust_pvalue(method = "bonferroni") %>%
add_significance()
stat.test
# Create boxplot
bxp <- ggboxplot(
df, x = "sample_type", y = "expression",
facet.by = c("gene", "cancer_type")
) +
rotate_x_text(angle = 60)
# Add adjusted p-values
stat.test <- stat.test %>% add_xy_position(x = "sample_type")
# Hide ns and change the bracket tip length
bxp + stat_pvalue_manual(
stat.test, label = "p.adj.signif",
hide.ns = TRUE, tip.length = 0
)
# Load required R packages
library(ggpubr)
library(rstatix)
# Data preparation
df <- tibble::tribble(
~sample_type, ~expression, ~cancer_type, ~gene,
"cancer", 25.8, "Lung", "Gene1",
"cancer", 25.5, "Liver", "Gene1",
"cancer", 22.4, "Liver", "Gene1",
"cancer", 21.2, "Lung", "Gene1",
"cancer", 24.5, "Liver", "Gene1",
"cancer", 27.3, "Liver", "Gene1",
"cancer", 30.9, "Liver", "Gene1",
"cancer", 17.6, "Breast", "Gene1",
"cancer", 19.7, "Lung", "Gene1",
"cancer", 9.7, "Breast", "Gene1",
"cancer", 15.2, "Breast", "Gene2",
"cancer", 26.4, "Liver", "Gene2",
"cancer", 25.8, "Lung", "Gene2",
"cancer", 9.7, "Breast", "Gene2",
"cancer", 21.2, "Lung", "Gene2",
"cancer", 24.5, "Liver", "Gene2",
"cancer", 14.5, "Breast", "Gene2",
"cancer", 19.7, "Lung", "Gene2",
"cancer", 25.2, "Lung", "Gene2",
"normal", 43.5, "Lung", "Gene1",
"normal", 76.5, "Liver", "Gene1",
"normal", 21.9, "Breast", "Gene1",
"normal", 69.9, "Liver", "Gene1",
"normal", 101.7, "Liver", "Gene1",
"normal", 80.1, "Liver", "Gene1",
"normal", 19.2, "Breast", "Gene1",
"normal", 49.5, "Lung", "Gene1",
"normal", 34.5, "Breast", "Gene1",
"normal", 51.9, "Lung", "Gene1",
"normal", 67.5, "Lung", "Gene2",
"normal", 30, "Breast", "Gene2",
"normal", 76.5, "Liver", "Gene2",
"normal", 88.5, "Liver", "Gene2",
"normal", 69.9, "Liver", "Gene2",
"normal", 49.5, "Lung", "Gene2",
"normal", 80.1, "Liver", "Gene2",
"normal", 79.2, "Liver", "Gene2",
"normal", 12.6, "Breast", "Gene2",
"normal", 97.5, "Liver", "Gene2",
"normal", 64.5, "Liver", "Gene2"
)
# Summary statistics
df %>%
group_by(gene, cancer_type, sample_type) %>%
get_summary_stats(expression, type = "common")
# Statistical test
# group the data by cancer type and gene
# Compare expression values of normal and cancer samples
stat.test <- df %>%
group_by(cancer_type, gene) %>%
t_test(expression ~ sample_type) %>%
adjust_pvalue(method = "bonferroni") %>%
add_significance()
stat.test
# Create boxplot
bxp <- ggboxplot(
df, x = "sample_type", y = "expression",
facet.by = c("gene", "cancer_type")
) +
rotate_x_text(angle = 60)
# Add adjusted p-values
stat.test <- stat.test %>% add_xy_position(x = "sample_type")
# Show p-values and significance levels
bxp + stat_pvalue_manual(
stat.test, label = "{p.adj}{p.adj.signif}",
hide.ns = TRUE, tip.length = 0
)
边栏推荐
- 电脑无缘无故黑屏,无法调节亮度。
- Homer forecast motif
- On April 17, 2022, the five heart matchmaker team received double good news
- 程序员成长第六篇:如何选择公司?
- Redis exceeds the maximum memory error oom command not allowed when used memory & gt; ' maxmemory'
- Order by injection
- File operation (detailed!)
- Take you ten days to easily finish the finale of go micro services (distributed transactions)
- How to Add P-Values onto Horizontal GGPLOTS
- [idea] use the plug-in to reverse generate code with one click
猜你喜欢
[visual studio 2019] create MFC desktop program (install MFC development components | create MFC application | edit MFC application window | add click event for button | Modify button text | open appl
File operation (detailed!)
Redis exceeds the maximum memory error oom command not allowed when used memory & gt; ' maxmemory'
Thesis translation: 2022_ PACDNN: A phase-aware composite deep neural network for speech enhancement
Seriation in R: How to Optimally Order Objects in a Data Matrice
JS -- take a number randomly from the array every call, and it cannot be the same as the last time
Tdsql | difficult employment? Tencent cloud database micro authentication to help you
亚马逊云科技 Community Builder 申请窗口开启
HOW TO EASILY CREATE BARPLOTS WITH ERROR BARS IN R
可升级合约的原理-DelegateCall
随机推荐
Cluster Analysis in R Simplified and Enhanced
Never forget, there will be echoes | hanging mirror sincerely invites you to participate in the opensca user award research
GGPLOT: HOW TO DISPLAY THE LAST VALUE OF EACH LINE AS LABEL
ESP32 Arduino 引入LVGL 碰到的一些问题
YYGH-BUG-05
通讯录的实现(文件版本)
SSRF
基于Hardhat和Openzeppelin开发可升级合约(二)
BEAUTIFUL GGPLOT VENN DIAGRAM WITH R
CTF record
Develop scalable contracts based on hardhat and openzeppelin (II)
YYGH-10-微信支付
Native method merge word
Cluster Analysis in R Simplified and Enhanced
[visual studio 2019] create and import cmake project
bedtools使用教程
Redis exceeds the maximum memory error oom command not allowed when used memory & gt; ' maxmemory'
行业的分析
Principle of scalable contract delegatecall
基于Hardhat编写合约测试用例