当前位置:网站首页>GGPUBR: HOW TO ADD ADJUSTED P-VALUES TO A MULTI-PANEL GGPLOT
GGPUBR: HOW TO ADD ADJUSTED P-VALUES TO A MULTI-PANEL GGPLOT
2022-07-02 11:50:00 【Xiaoyu 2022】
# Load required R packages
library(ggpubr)
library(rstatix)
# Data preparation
df <- tibble::tribble(
~sample_type, ~expression, ~cancer_type, ~gene,
"cancer", 25.8, "Lung", "Gene1",
"cancer", 25.5, "Liver", "Gene1",
"cancer", 22.4, "Liver", "Gene1",
"cancer", 21.2, "Lung", "Gene1",
"cancer", 24.5, "Liver", "Gene1",
"cancer", 27.3, "Liver", "Gene1",
"cancer", 30.9, "Liver", "Gene1",
"cancer", 17.6, "Breast", "Gene1",
"cancer", 19.7, "Lung", "Gene1",
"cancer", 9.7, "Breast", "Gene1",
"cancer", 15.2, "Breast", "Gene2",
"cancer", 26.4, "Liver", "Gene2",
"cancer", 25.8, "Lung", "Gene2",
"cancer", 9.7, "Breast", "Gene2",
"cancer", 21.2, "Lung", "Gene2",
"cancer", 24.5, "Liver", "Gene2",
"cancer", 14.5, "Breast", "Gene2",
"cancer", 19.7, "Lung", "Gene2",
"cancer", 25.2, "Lung", "Gene2",
"normal", 43.5, "Lung", "Gene1",
"normal", 76.5, "Liver", "Gene1",
"normal", 21.9, "Breast", "Gene1",
"normal", 69.9, "Liver", "Gene1",
"normal", 101.7, "Liver", "Gene1",
"normal", 80.1, "Liver", "Gene1",
"normal", 19.2, "Breast", "Gene1",
"normal", 49.5, "Lung", "Gene1",
"normal", 34.5, "Breast", "Gene1",
"normal", 51.9, "Lung", "Gene1",
"normal", 67.5, "Lung", "Gene2",
"normal", 30, "Breast", "Gene2",
"normal", 76.5, "Liver", "Gene2",
"normal", 88.5, "Liver", "Gene2",
"normal", 69.9, "Liver", "Gene2",
"normal", 49.5, "Lung", "Gene2",
"normal", 80.1, "Liver", "Gene2",
"normal", 79.2, "Liver", "Gene2",
"normal", 12.6, "Breast", "Gene2",
"normal", 97.5, "Liver", "Gene2",
"normal", 64.5, "Liver", "Gene2"
)
# Summary statistics
df %>%
group_by(gene, cancer_type, sample_type) %>%
get_summary_stats(expression, type = "common")
# Statistical test
# group the data by cancer type and gene
# Compare expression values of normal and cancer samples
stat.test <- df %>%
group_by(cancer_type, gene) %>%
t_test(expression ~ sample_type) %>%
adjust_pvalue(method = "bonferroni") %>%
add_significance()
stat.test
# Create boxplot
bxp <- ggboxplot(
df, x = "sample_type", y = "expression",
facet.by = c("gene", "cancer_type")
) +
rotate_x_text(angle = 60)
# Add adjusted p-values
stat.test <- stat.test %>% add_xy_position(x = "sample_type")
bxp + stat_pvalue_manual(stat.test, label = "p.adj")

# Load required R packages
library(ggpubr)
library(rstatix)
# Data preparation
df <- tibble::tribble(
~sample_type, ~expression, ~cancer_type, ~gene,
"cancer", 25.8, "Lung", "Gene1",
"cancer", 25.5, "Liver", "Gene1",
"cancer", 22.4, "Liver", "Gene1",
"cancer", 21.2, "Lung", "Gene1",
"cancer", 24.5, "Liver", "Gene1",
"cancer", 27.3, "Liver", "Gene1",
"cancer", 30.9, "Liver", "Gene1",
"cancer", 17.6, "Breast", "Gene1",
"cancer", 19.7, "Lung", "Gene1",
"cancer", 9.7, "Breast", "Gene1",
"cancer", 15.2, "Breast", "Gene2",
"cancer", 26.4, "Liver", "Gene2",
"cancer", 25.8, "Lung", "Gene2",
"cancer", 9.7, "Breast", "Gene2",
"cancer", 21.2, "Lung", "Gene2",
"cancer", 24.5, "Liver", "Gene2",
"cancer", 14.5, "Breast", "Gene2",
"cancer", 19.7, "Lung", "Gene2",
"cancer", 25.2, "Lung", "Gene2",
"normal", 43.5, "Lung", "Gene1",
"normal", 76.5, "Liver", "Gene1",
"normal", 21.9, "Breast", "Gene1",
"normal", 69.9, "Liver", "Gene1",
"normal", 101.7, "Liver", "Gene1",
"normal", 80.1, "Liver", "Gene1",
"normal", 19.2, "Breast", "Gene1",
"normal", 49.5, "Lung", "Gene1",
"normal", 34.5, "Breast", "Gene1",
"normal", 51.9, "Lung", "Gene1",
"normal", 67.5, "Lung", "Gene2",
"normal", 30, "Breast", "Gene2",
"normal", 76.5, "Liver", "Gene2",
"normal", 88.5, "Liver", "Gene2",
"normal", 69.9, "Liver", "Gene2",
"normal", 49.5, "Lung", "Gene2",
"normal", 80.1, "Liver", "Gene2",
"normal", 79.2, "Liver", "Gene2",
"normal", 12.6, "Breast", "Gene2",
"normal", 97.5, "Liver", "Gene2",
"normal", 64.5, "Liver", "Gene2"
)
# Summary statistics
df %>%
group_by(gene, cancer_type, sample_type) %>%
get_summary_stats(expression, type = "common")
# Statistical test
# group the data by cancer type and gene
# Compare expression values of normal and cancer samples
stat.test <- df %>%
group_by(cancer_type, gene) %>%
t_test(expression ~ sample_type) %>%
adjust_pvalue(method = "bonferroni") %>%
add_significance()
stat.test
# Create boxplot
bxp <- ggboxplot(
df, x = "sample_type", y = "expression",
facet.by = c("gene", "cancer_type")
) +
rotate_x_text(angle = 60)
# Add adjusted p-values
stat.test <- stat.test %>% add_xy_position(x = "sample_type")
bxp + stat_pvalue_manual(stat.test, label = "p.adj.signif")

# Load required R packages
library(ggpubr)
library(rstatix)
# Data preparation
df <- tibble::tribble(
~sample_type, ~expression, ~cancer_type, ~gene,
"cancer", 25.8, "Lung", "Gene1",
"cancer", 25.5, "Liver", "Gene1",
"cancer", 22.4, "Liver", "Gene1",
"cancer", 21.2, "Lung", "Gene1",
"cancer", 24.5, "Liver", "Gene1",
"cancer", 27.3, "Liver", "Gene1",
"cancer", 30.9, "Liver", "Gene1",
"cancer", 17.6, "Breast", "Gene1",
"cancer", 19.7, "Lung", "Gene1",
"cancer", 9.7, "Breast", "Gene1",
"cancer", 15.2, "Breast", "Gene2",
"cancer", 26.4, "Liver", "Gene2",
"cancer", 25.8, "Lung", "Gene2",
"cancer", 9.7, "Breast", "Gene2",
"cancer", 21.2, "Lung", "Gene2",
"cancer", 24.5, "Liver", "Gene2",
"cancer", 14.5, "Breast", "Gene2",
"cancer", 19.7, "Lung", "Gene2",
"cancer", 25.2, "Lung", "Gene2",
"normal", 43.5, "Lung", "Gene1",
"normal", 76.5, "Liver", "Gene1",
"normal", 21.9, "Breast", "Gene1",
"normal", 69.9, "Liver", "Gene1",
"normal", 101.7, "Liver", "Gene1",
"normal", 80.1, "Liver", "Gene1",
"normal", 19.2, "Breast", "Gene1",
"normal", 49.5, "Lung", "Gene1",
"normal", 34.5, "Breast", "Gene1",
"normal", 51.9, "Lung", "Gene1",
"normal", 67.5, "Lung", "Gene2",
"normal", 30, "Breast", "Gene2",
"normal", 76.5, "Liver", "Gene2",
"normal", 88.5, "Liver", "Gene2",
"normal", 69.9, "Liver", "Gene2",
"normal", 49.5, "Lung", "Gene2",
"normal", 80.1, "Liver", "Gene2",
"normal", 79.2, "Liver", "Gene2",
"normal", 12.6, "Breast", "Gene2",
"normal", 97.5, "Liver", "Gene2",
"normal", 64.5, "Liver", "Gene2"
)
# Summary statistics
df %>%
group_by(gene, cancer_type, sample_type) %>%
get_summary_stats(expression, type = "common")
# Statistical test
# group the data by cancer type and gene
# Compare expression values of normal and cancer samples
stat.test <- df %>%
group_by(cancer_type, gene) %>%
t_test(expression ~ sample_type) %>%
adjust_pvalue(method = "bonferroni") %>%
add_significance()
stat.test
# Create boxplot
bxp <- ggboxplot(
df, x = "sample_type", y = "expression",
facet.by = c("gene", "cancer_type")
) +
rotate_x_text(angle = 60)
# Add adjusted p-values
stat.test <- stat.test %>% add_xy_position(x = "sample_type")
# Hide ns and change the bracket tip length
bxp + stat_pvalue_manual(
stat.test, label = "p.adj.signif",
hide.ns = TRUE, tip.length = 0
)

# Load required R packages
library(ggpubr)
library(rstatix)
# Data preparation
df <- tibble::tribble(
~sample_type, ~expression, ~cancer_type, ~gene,
"cancer", 25.8, "Lung", "Gene1",
"cancer", 25.5, "Liver", "Gene1",
"cancer", 22.4, "Liver", "Gene1",
"cancer", 21.2, "Lung", "Gene1",
"cancer", 24.5, "Liver", "Gene1",
"cancer", 27.3, "Liver", "Gene1",
"cancer", 30.9, "Liver", "Gene1",
"cancer", 17.6, "Breast", "Gene1",
"cancer", 19.7, "Lung", "Gene1",
"cancer", 9.7, "Breast", "Gene1",
"cancer", 15.2, "Breast", "Gene2",
"cancer", 26.4, "Liver", "Gene2",
"cancer", 25.8, "Lung", "Gene2",
"cancer", 9.7, "Breast", "Gene2",
"cancer", 21.2, "Lung", "Gene2",
"cancer", 24.5, "Liver", "Gene2",
"cancer", 14.5, "Breast", "Gene2",
"cancer", 19.7, "Lung", "Gene2",
"cancer", 25.2, "Lung", "Gene2",
"normal", 43.5, "Lung", "Gene1",
"normal", 76.5, "Liver", "Gene1",
"normal", 21.9, "Breast", "Gene1",
"normal", 69.9, "Liver", "Gene1",
"normal", 101.7, "Liver", "Gene1",
"normal", 80.1, "Liver", "Gene1",
"normal", 19.2, "Breast", "Gene1",
"normal", 49.5, "Lung", "Gene1",
"normal", 34.5, "Breast", "Gene1",
"normal", 51.9, "Lung", "Gene1",
"normal", 67.5, "Lung", "Gene2",
"normal", 30, "Breast", "Gene2",
"normal", 76.5, "Liver", "Gene2",
"normal", 88.5, "Liver", "Gene2",
"normal", 69.9, "Liver", "Gene2",
"normal", 49.5, "Lung", "Gene2",
"normal", 80.1, "Liver", "Gene2",
"normal", 79.2, "Liver", "Gene2",
"normal", 12.6, "Breast", "Gene2",
"normal", 97.5, "Liver", "Gene2",
"normal", 64.5, "Liver", "Gene2"
)
# Summary statistics
df %>%
group_by(gene, cancer_type, sample_type) %>%
get_summary_stats(expression, type = "common")
# Statistical test
# group the data by cancer type and gene
# Compare expression values of normal and cancer samples
stat.test <- df %>%
group_by(cancer_type, gene) %>%
t_test(expression ~ sample_type) %>%
adjust_pvalue(method = "bonferroni") %>%
add_significance()
stat.test
# Create boxplot
bxp <- ggboxplot(
df, x = "sample_type", y = "expression",
facet.by = c("gene", "cancer_type")
) +
rotate_x_text(angle = 60)
# Add adjusted p-values
stat.test <- stat.test %>% add_xy_position(x = "sample_type")
# Show p-values and significance levels
bxp + stat_pvalue_manual(
stat.test, label = "{p.adj}{p.adj.signif}",
hide.ns = TRUE, tip.length = 0
)
边栏推荐
猜你喜欢

基于Hardhat和Openzeppelin开发可升级合约(二)

数字化转型挂帅复产复工,线上线下全融合重建商业逻辑

由粒子加速器产生的反中子形成的白洞

Never forget, there will be echoes | hanging mirror sincerely invites you to participate in the opensca user award research

抖音海外版TikTok:正与拜登政府敲定最终数据安全协议

A white hole formed by antineutrons produced by particle accelerators

JS -- take a number randomly from the array every call, and it cannot be the same as the last time

Tdsql | difficult employment? Tencent cloud database micro authentication to help you

Amazon cloud technology community builder application window opens

2022年4月17日五心红娘团队收获双份喜报
随机推荐
Easyexcel and Lombok annotations and commonly used swagger annotations
Develop scalable contracts based on hardhat and openzeppelin (I)
PHP 2D and multidimensional arrays are out of order, PHP_ PHP scrambles a simple example of a two-dimensional array and a multi-dimensional array. The shuffle function in PHP can only scramble one-dim
揭露数据不一致的利器 —— 实时核对系统
File operation (detailed!)
Is it safe to open a stock account online? I'm a novice, please guide me
Tiktok overseas tiktok: finalizing the final data security agreement with Biden government
多文件程序X32dbg动态调试
Always report errors when connecting to MySQL database
Some things configured from ros1 to ros2
Is the Ren domain name valuable? Is it worth investing? What is the application scope of Ren domain name?
Basic usage of MySQL in centos8
念念不忘,必有回响 | 悬镜诚邀您参与OpenSCA用户有奖调研
Principle of scalable contract delegatecall
Esp32 stores the distribution network information +led displays the distribution network status + press the key to clear the distribution network information (source code attached)
Eight sorting summaries
Power Spectral Density Estimates Using FFT---MATLAB
时间格式化显示
YYGH-BUG-05
HOW TO ADD P-VALUES ONTO A GROUPED GGPLOT USING THE GGPUBR R PACKAGE
