当前位置:网站首页>Aprelu: cross border application, adaptive relu | IEEE tie 2020 for machine fault detection
Aprelu: cross border application, adaptive relu | IEEE tie 2020 for machine fault detection
2020-11-08 21:03:00 【Xiaofei's notes on algorithm Engineering】
> The work of this paper belongs to the application of deep learning in industry , Learn from the solution of computer vision , For the scene of machine fault detection, an adaptive APReLU, The accuracy of fault detection has been greatly improved . The whole idea of the paper should also be applied to computer vision , The code is also open source , You can try it
source : Xiaofei's algorithm Engineering Notes official account
The paper : Deep Residual Networks with Adaptively Parametric Rectifier Linear Units for Fault Diagnosis
- Address of thesis :https://ieeexplore.ieee.org/document/8998530/metrics#metrics
- Code address :https://github.com/zhao62/Adaptively-Parametric-ReLU
Introduction
The scenario discussed in this paper is the error detection of electronic devices , Due to long-term operation in harsh environments , Electronic equipment often inevitably fails , And then cause accidents and losses . And the vibration signal (vibration signal) It usually includes pulses and fluctuations due to machine failure , Can be used to detect equipment failure . In the near future , Deep learning is also used in error detection of electronic devices , Take the vibration as the input signal , Output whether the current device is normal .
Mainstream classification neural networks use an identical set of nonlinear transformations to deal with different inputs , Pictured a Shown ,F、G and H Represents a nonlinear change ,$=$ Represents whether the nonlinear transformation is the same . For vibration signal scenarios , Machines in the same state of health , Because the current operation is different , The difference of the feedback vibration signals may be large , It is difficult to classify different waveforms into the same health state . Contrary , Machines in different health states occasionally produce the same vibration signal , Neural networks map them to similar regions , It's hard to distinguish . Sum up , The fixed nonlinear transformation may have a negative impact on the feature learning ability in the vibration signal scene , It is very meaningful to be able to learn automatically and use different nonlinear transformations according to the input signal .
This paper is based on ResNet An improved version of ResNet-APReLU, Pictured b Shown , Different nonlinear transformations are assigned according to the input signal , Specifically by inserting a similar SE(squeeze-and-excitation) The module's subnet to adjust the slope of the activation function , It can greatly improve the accuracy of fault detection . Because of the special scene of the thesis , So I mainly study the methods proposed in the paper , As for the application scenario related part and experimental part , Just take it easy .
Fundamentals of classical ResNets
The paper ResNet Based on ,ResNet Its core structure is shown in the figure 2a Shown , I'm sure you all know , No more introduction . take ResNet Applied to machine error recognition , Pictured 2b Shown , Input vibration signal , After the feature extraction of the network, the state recognition is carried out , Determine whether the machine is healthy or in some other wrong state . The core of the paper is through improvement ReLU Adaptive nonlinear transformation , original edition ReLU It can be formulated as :
Design of the developed ResNet-APReLU
Design of the fundamental architecture for APReLU
APReLU Integrated with a specially designed subnet , It's kind of like SE modular , The multiplicative factor used for nonlinear transformation is predicted adaptively according to the input , Structure is shown in figure 3a Shown , Output channel-wise Of ReLU Parameters , The following steps are included :
- use ReLU and GAP Mapping input features to 1D vector , Get positive features (positive feature) The overall information of . use min(x, 0) and GAP Map the input feature to another 1D vector , Get negative features (negative feature) The overall information of , Negative information may contain some useful fault information .GAP It can deal with the problem of signal offset , The input feature map information is compressed into two 1D vector , They represent positive and negative information respectively .
- Put two 1D vector Concate together , Conduct FC-BN-ReLU-FC-BN-Sigmoid Calculation , Two FC The dimension of output and input characteristics is consistent , Last sigmoid The output is used for the formula 10 Of $\alpha \in (0, 1)$ factor :
Architecture of the developed ResNet-APReLU for vibration-based gearbox fault diagnosis
be based on APEeLU Building new ResBlock, Pictured b Shown , With the original ResBlock Almost the same , Just to ReLU Replace with APReLU Adaptive nonlinear activation .APReLU The output size is the same as the input size , It can be simply embedded in a variety of networks . The complete network structure is shown in the figure c Shown , Finally, output the prediction of multiple machine states , Calculate the cross entropy loss , Do gradient descent learning .
Experimental Results
From the results , For machine failure scenarios , The method proposed in this paper is very effective .
Conclustion
The work of this paper belongs to the application of deep learning in industry , Learn from the solution of computer vision , For the scene of machine fault detection, an adaptive APReLU, The accuracy of fault detection has been greatly improved . The whole idea of the paper should also be applied to computer vision , The code is also open source , You can try it .
> If this article helps you , Please give me a compliment or watch it ~
More on this WeChat official account 【 Xiaofei's algorithm Engineering Notes 】
版权声明
本文为[Xiaofei's notes on algorithm Engineering]所创,转载请带上原文链接,感谢
边栏推荐
猜你喜欢
VirtualBox install centos7
200人的程序员面试经验,都在这里了
Iptables from introduction to mastery
Newbe.ObjectVisitor Example 1
Dynamic query processing method of stored procedure
git操作与分支管理规范
CMS garbage collector
Looking for a small immutable dictionary with better performance
Solve the problem that the value of new date() of JS in IE and Firefox is invalid date and Nan Nan
To introduce to you, this is my flow chart software—— draw.io
随机推荐
PAT_ Grade A_ 1056 Mice and Rice
Octave基本语法
Summary of interface test case ideas
信息安全课程设计第一周任务(7条指令的分析)
Mongodb add delete modify query operation
[cloud service] there are so many ECS instances on alicloud server, how to select the type? Best practice note
net.sf.json.JSONObject对时间戳的格式化处理
go语言参数传递到底是传值还是传引用?
[elastic search technology sharing] - ten pictures to show you the principle of ES! Understand why to say: ES is quasi real time!
简明 VIM 练级攻略
JVM Zhenxiang series: easy understanding of class files to virtual machines (Part 2)
Chapter five
Infix expression to suffix expression
为什么需要使用API管理平台
精通高并发与多线程,却不会用ThreadLocal?
APReLU:跨界应用,用于机器故障检测的自适应ReLU | IEEE TIE 2020
. net core cross platform resource monitoring library and dotnet tool
Django's simple user system (3)
Simulink中封装子系统
opencv 解决ippicv下载失败问题ippicv_2019_lnx_intel64_general_20180723.tgz离线下载