当前位置:网站首页>Deep Learning Theory - Overfitting, Underfitting, Regularization, Optimizers
Deep Learning Theory - Overfitting, Underfitting, Regularization, Optimizers
2022-08-04 06:19:00 【Learning Adventures】
Data augmentation: 1. Do not overdo it, otherwise it will only increase the training time and will not increase the generalization ability; 2.Add extraneous data
L2 regularity: tend to respond to the common characteristics of training set samples; make the model prefer samples with small parameters to reduce the risk of overfitting
Several common optimizers
For sparse data, try to choose an optimization method with an adaptive learning rate. It does not need to be adjusted manually. It is better to use the default value.
Stochastic gradient descent usually takes longer to train and is prone to saddle points, but results are more reliable with good initialization and learning rate scheduling.
Overall, Adam is by far the best choice.
边栏推荐
- TensorFlow2 study notes: 8. tf.keras implements linear regression, Income dataset: years of education and income dataset
- 动手学深度学习_多层感知机
- 软著撰写注意事项
- tensorRT教程——使用tensorRT OP 搭建自己的网络
- JPEG2jpg
- MNIST手写数字识别 —— Lenet-5首个商用级别卷积神经网络
- Briefly say Q-Q map; stats.probplot (QQ map)
- 【Copy攻城狮日志】飞浆学院强化学习7日打卡营-学习笔记
- 【CV-Learning】图像分类
- Polynomial Regression (PolynomialFeatures)
猜你喜欢
CSDN大礼包--高校圆桌派大礼包
图像形变(插值方法)
典型CCN网络——efficientNet(2019-Google-已开源)
MNIST手写数字识别 —— 图像分析法实现二分类
光条中心提取方法总结(一)
Copy Siege Lions "sticky" to AI couplets
TensorFlow2 study notes: 8. tf.keras implements linear regression, Income dataset: years of education and income dataset
MOOSE平台官方第二个例子分析——关于创建Kernel,求解对流扩散方程
TensorFlow2 study notes: 7. Optimizer
yoloV5 使用——训练速度慢,加速训练
随机推荐
[Deep Learning 21-Day Learning Challenge] 3. Use a self-made dataset - Convolutional Neural Network (CNN) Weather Recognition
TensorFlow: tf.ConfigProto() and Session
yoloV5 使用——训练速度慢,加速训练
动手学深度学习_softmax回归
MNIST手写数字识别 —— 图像分析法实现二分类
SQL注入详解
PyTorch
Postgresql snapshot
动手学深度学习_卷积神经网络CNN
光条中心提取方法总结(一)
(Navigation page) OpenStack-M version - manual construction of two nodes - with video from station B
YOLOV5 V6.1 详细训练方法
Transformer
pytorch学习-没掌握的点
深度确定性策略梯度(DDPG)
TensorFlow2 study notes: 6. Overfitting and underfitting, and their mitigation solutions
浅谈游戏音效测试点
MySQL leftmost prefix principle [I understand hh]
Vision Transformer 论文 + 详解( ViT )
审稿意见回复