当前位置:网站首页>Derivation of Fourier transform
Derivation of Fourier transform
2022-07-03 09:20:00 【fishfuck】
function f L ( t ) f_L(t) fL(t) With L L L ( L > 0 ) (L>0) (L>0) For cycles , In the interval [ − L 2 , L 2 ] [-\frac L2,\frac L2] [−2L,2L] Continuous on ( Or meet the Dirichlet condition ), be f L ( t ) f_L(t) fL(t) stay [ − L 2 , L 2 ] [-\frac L2,\frac L2] [−2L,2L] Can be expanded into Fourier series
f L ( t ) = a 0 2 + ∑ n = 1 ∞ ( a n cos n ω t + b n sin n ω t ) . f_{L}(t)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos n \omega t+b_{n} \sin n \omega t\right) \text {. } fL(t)=2a0+n=1∑∞(ancosnωt+bnsinnωt).
among
ω = 2 π L a n = 2 L ∫ − L 2 L 2 f L ( t ) cos n ω t d t . n = 0 , 1 , 2 … b n = 2 L ∫ − L 2 L 2 f L ( t ) sin n ω t d t . n = 1 , 2 , ⋯ \begin{aligned} &\omega=\frac{2\pi}{L} \\ &a_{n}=\frac{2}{L} \int_{-\frac{L}{2}}^{\frac{L}{2}} f_{L}(t) \cos n \omega t d t . \quad n=0,1,2 \ldots \\ &b_{n}=\frac{2}{L} \int_{-\frac{L}{2}}^{\frac{L}{2}} f_{L}(t) \sin { n \omega t } d t . \quad n=1,2, \cdots \end{aligned} ω=L2πan=L2∫−2L2LfL(t)cosnωtdt.n=0,1,2…bn=L2∫−2L2LfL(t)sinnωtdt.n=1,2,⋯
So there are
cos t = e i t + e − i t 2 \cos t=\frac{e^{i t}+e^{-i t}}{2} cost=2eit+e−it
sin t = − i e i t − e − i t 2 \sin t=-i \frac{e^{i t}-e^{-i t}}{2} sint=−i2eit−e−it
be
f L ( t ) = a 0 2 + ∑ n = 1 ∞ ( a n cos n ω t + b n sin n ω t ) = a 0 2 + ∑ n = 1 ∞ ( a n e i n ω t + e − i n ω t 2 − i b n e i n ω t − e − i n ω t 2 ) = a 0 2 + ∑ n = 1 ∞ ( a n − i b n 2 e i n ω t + a n + i b n 2 i e − i n ω t ) \begin{aligned} f_{L}(t) &=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos n \omega t+b_{n} \sin n \omega t\right) \\ &=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \frac{e^{i n \omega t}+e^{-i n \omega t}}{2}-i b_{n} \frac{e^{i n \omega t}-e^{-i n \omega t}}{2}\right) \\ &=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(\frac{a_{n}-i b_{n}}{2} e^{i n \omega t}+\frac{a_{n}+i b_{n}}{2 i} e^{-i n \omega t}\right) \end{aligned} fL(t)=2a0+n=1∑∞(ancosnωt+bnsinnωt)=2a0+n=1∑∞(an2einωt+e−inωt−ibn2einωt−e−inωt)=2a0+n=1∑∞(2an−ibneinωt+2ian+ibne−inωt)
We make
c 0 = a 0 2 = 1 L ∫ − ∞ ∞ f L ( t ) d t c_{0}=\frac{a_{0}}{2}=\frac{1}{L} \int_{-\infty}^{\infty} f_{L}(t) d t c0=2a0=L1∫−∞∞fL(t)dt
c n = a n − i b n 2 c_{n}=\frac{a_{n}-i b_{n}}{2} cn=2an−ibn
c − n = a n + i b n 2 {c_{-n}}=\frac{a_{n}+i b_{n}}{2} c−n=2an+ibn
So there are
C n = 1 L ∫ − L 2 L 2 f L ( t ) e − i n ω t t d t n = 0 , ± 1 , ± 2 , … C_{n}=\frac{1}{L} \int_{-\frac{L}{2}}^{\frac{L}{2}} f_{L}(t) e^{-i n \omega t t} d t \quad n=0, \pm 1,\pm 2, \ldots Cn=L1∫−2L2LfL(t)e−inωttdtn=0,±1,±2,…
be
f L ( t ) = c 0 + ∑ n = 1 ∞ ( c n e i n ω t + c i n e − i n ω t ) = ∑ n = − ∞ ∞ C n e i n u t t = ∑ n = − ∞ ∞ ( 1 2 ∫ − L 2 L 2 f L ( τ ) e − i n ω t d τ ) e i n ω t \begin{aligned} f_{L}(t) &=c_{0}+\sum_{n=1}^{\infty}\left(c_{n} e^{i n \omega t}+c_{i n} e^{-i n \omega t}\right) \\ &=\sum_{n=-\infty}^{\infty} C_{n} e^{i n u t t} \\ &=\sum_{n=-\infty}^{\infty}\left(\frac{1}{2} \int_{-\frac{L}{2}}^{\frac{L}{2}} f_{L}(\tau) e^{-i n \omega t} d \tau \right) e^{i n \omega t} \end{aligned} fL(t)=c0+n=1∑∞(cneinωt+cine−inωt)=n=−∞∑∞Cneinutt=n=−∞∑∞(21∫−2L2LfL(τ)e−inωtdτ)einωt
We consider nonperiodic functions in the interval [ − L 2 , L 2 ] [-\frac L2,\frac L2] [−2L,2L] On the situation . Make
f ( t ) = ∑ n = − ∞ ∞ c n e i n ω t ( − L 2 < t < L 2 ) . ∗ f(t)=\sum_{n=-\infty}^{\infty} c_{n} e^{ {in\omega t }}\left(-\frac{L}{2}<t<\frac{L}{2}\right). \quad* f(t)=n=−∞∑∞cneinωt(−2L<t<2L).∗
among
c n = 1 L ∫ − L 2 L 2 f ( t ) e − i n ω τ d τ . c_{n}=\frac{1}{L} \int_{-\frac{L}{2}}^{\frac{L}{2}} f(t) e^{-i n \omega \tau} d \tau . cn=L1∫−2L2Lf(t)e−inωτdτ.
We noticed that ( ∗ ) (*) (∗) The right end of the equation defines a period of L L L Function of f L 1 ( t ) = { f ( t ) − L 2 < t < L 2 f ( − L 2 ) + f ( L 2 ) 2 t = ± L 2 f_{L_{1}}(t)=\left\{\begin{array}{l}f(t) \quad-\frac{L}{2}<t<\frac{L}{2} \\ \frac{\left.f\left(-\frac{L }{2}\right)+f(\frac{L}{2}\right)}{2} \quad t=\pm \frac{L}{2}\end{array}\right. fL1(t)={ f(t)−2L<t<2L2f(−2L)+f(2L)t=±2L
Make L → + ∞ L \rightarrow+\infty L→+∞ Then periodic function f L 1 ( t ) f_{L_{1}}(t) fL1(t) The limit is f ( t ) f(t) f(t), That is to say
lim L → + ∞ f L 1 ( t ) = f ( t ) \lim _{L \rightarrow+\infty} f_{L_{1}}(t)=f(t) L→+∞limfL1(t)=f(t)
here , To any − ∞ < t < + ∞ -\infty<t<+\infty −∞<t<+∞, Yes
f ( t ) = lim L → + ∞ ∑ n = − ∞ + ∞ c n e i n ω t . f(t)=\lim _{L \rightarrow+\infty} \sum_{n=-\infty}^{+\infty} c_{n} e^{ {in\omega t. }} f(t)=L→+∞limn=−∞∑+∞cneinωt.
( ∗ ) (*) (∗) The right side of the formula is ∑ n = − ∞ + ∞ c n e i n ω t . \sum_{n=-\infty}^{+\infty} c_{n} e^{ {in\omega t. }} ∑n=−∞+∞cneinωt., among ω = 2 π L \omega=\frac{2 \pi}{L} ω=L2π.
Make
g n = c n L = ∫ − L 2 L 2 f ( t ) e − i n 2 π t L d t g_{n}=c_{n} L=\int_{-\frac{L}{2}}^{\frac{L}{2}} f(t) e^{\frac{-in 2 \pi t} L} d t gn=cnL=∫−2L2Lf(t)eL−in2πtdt
be
f L ( t ) = 1 2 π ∑ n = − ∞ ∞ g n e − i n 2 π t L [ ( n + 1 ) − n ] 2 π L = ∑ n = − ∞ ∞ ( 1 L ∫ − L 2 L 2 f L ( τ ) e − i n ω τ d τ ) e i n ω t \begin{aligned} f_{L}(t) &=\frac{1}{2\pi} \sum_{n=-\infty}^{\infty} g_{n} e^{-\frac{i n 2 \pi t}{L}} \frac{[(n+1)-n] 2\pi}{L} \\ &=\sum_{n=-\infty}^{\infty}\left(\frac{1}{L} \int_{-\frac{L}{2}}^{\frac{L}{2}} f_{L}(\tau) e^{-i n \omega \tau} d \tau\right) e^{ {in\omega t }} \end{aligned} fL(t)=2π1n=−∞∑∞gne−Lin2πtL[(n+1)−n]2π=n=−∞∑∞(L1∫−2L2LfL(τ)e−inωτdτ)einωt
remember ω n = n 2 π L \omega_{n}=\frac{n 2 \pi}{L} ωn=Ln2π, We make F [ f ( t ) ] L ( u ) = ∫ − L 2 L 2 f ( t ) e − i ω t d t \mathscr{F}\left[f(t) \right]_{L}(u)=\int_{-\frac{L}{2}}^{\frac{L}{2}} f(t) e^{-i \omega t} d t F[f(t)]L(u)=∫−2L2Lf(t)e−iωtdt, be :
f L ( t ) = 1 2 π ∑ n = − ∞ ∞ F [ f ( t ) ] L ( ω n ) e i ω n t ( ω n + 1 − ω n ) . ∗ ∗ f_{L}(t)=\frac{1}{2 \pi} \sum_{n=-\infty}^{\infty} \mathscr{F}[f(t)]_{L}\left(\omega_{n}\right) e^{ {i\omega n } t}\left(\omega_{n+1}-\omega_{n}\right) \text {. } \quad** fL(t)=2π1n=−∞∑∞F[f(t)]L(ωn)eiωnt(ωn+1−ωn). ∗∗
When L → ∞ L \rightarrow \infty L→∞ when , F [ f ( t ) ] L ( ω ) \mathscr{F}[f(t)]_{L}\left(\omega\right) F[f(t)]L(ω) Naturally, it tends to a frequency domain function F [ f ( t ) ] ( ω ) = ∫ − ∞ ∞ f ( t ) e − i ω t d t \mathscr{F}[f(t)](\omega)=\int_{-\infty}^{\infty} f(t) e^{-i \omega t} d t F[f(t)](ω)=∫−∞∞f(t)e−iωtdt. So we finished the time domain function f ( t ) f(t) f(t) To frequency domain function F [ f ( t ) ] ( ω ) \mathscr{F}[f(t)]\left(\omega\right) F[f(t)](ω) Transformation of . We call F [ f ( t ) ] ( ω ) \mathscr{F}[f(t)]\left(\omega\right) F[f(t)](ω) It's Fourier transform .
With L → ∞ L \rightarrow \infty L→∞, Δ ω n = w n + 1 − w n → 0 \Delta \omega_{n}=w_{n+1}-w_{n} \rightarrow 0 Δωn=wn+1−wn→0, be ( ∗ ∗ ) (**) (∗∗) The formula can be regarded as 1 2 π ∫ − ∞ + ∞ F [ f ( t ) ] ( ω ) e i ω t d ω \frac{1}{2\pi} \int_{-\infty}^{+\infty} \mathscr{F}[f(t)](\omega) e^{i \omega t} d\omega 2π1∫−∞+∞F[f(t)](ω)eiωtdω Riemann sum of , So export
f ( t ) = 1 2 π ∫ − ∞ ∞ F [ f ( t ) ] ( ω ) e i ω t d ω . f(t)=\frac{1}{2\pi} \int_{-\infty}^{\infty} \mathscr{F}[f(t)](\omega) e^{i \omega t} d \omega . f(t)=2π1∫−∞∞F[f(t)](ω)eiωtdω.
Call the above formula F [ f ( t ) ] ( ω ) \mathscr{F}[f(t)](\omega) F[f(t)](ω) Inverse Fourier transform .
To what is known g ( ω ) g(\omega) g(ω), Its inverse Fourier transform is recorded as
F − 1 [ g ( ω ) ] ( t ) = 1 2 π ∫ − ∞ ∞ g ( ω ) e i ω t d ω \mathscr{F}^{-1} [g(\omega)](t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} g(\omega) e^{i \omega t} d \omega F−1[g(ω)](t)=2π1∫−∞∞g(ω)eiωtdω
边栏推荐
- AcWing 788. Number of pairs in reverse order
- What are the stages of traditional enterprise digital transformation?
- Just graduate student reading thesis
- LeetCode 508. 出现次数最多的子树元素和
- Use the interface colmap interface of openmvs to generate the pose file required by openmvs mvs
- LeetCode 75. 颜色分类
- Recommend a low code open source project of yyds
- [point cloud processing paper crazy reading classic version 11] - mining point cloud local structures by kernel correlation and graph pooling
- The "booster" of traditional office mode, Building OA office system, was so simple!
- LeetCode 532. 数组中的 k-diff 数对
猜你喜欢

The "booster" of traditional office mode, Building OA office system, was so simple!

【Kotlin学习】运算符重载及其他约定——重载算术运算符、比较运算符、集合与区间的约定

Vscode编辑器右键没有Open In Default Browser选项

图像修复方法研究综述----论文笔记

LeetCode 1089. 复写零

剑指 Offer II 029. 排序的循环链表

【点云处理之论文狂读经典版11】—— Mining Point Cloud Local Structures by Kernel Correlation and Graph Pooling

AcWing 786. Number k

LeetCode 871. Minimum refueling times

LeetCode 508. 出现次数最多的子树元素和
随机推荐
Methods of checking ports according to processes and checking processes according to ports
我們有個共同的名字,XX工
Go language - IO project
LeetCode 871. Minimum refueling times
Internet Protocol learning record
Digital management medium + low code, jnpf opens a new engine for enterprise digital transformation
Simple use of MATLAB
Digital statistics DP acwing 338 Counting problem
[point cloud processing paper crazy reading classic version 11] - mining point cloud local structures by kernel correlation and graph pooling
LeetCode 515. 在每个树行中找最大值
AcWing 788. Number of pairs in reverse order
AcWing 788. 逆序对的数量
excel一小时不如JNPF表单3分钟,这样做报表,领导都得点赞!
Banner - Summary of closed group meeting
AcWing 785. 快速排序(模板)
LeetCode 30. 串联所有单词的子串
Install third-party libraries such as Jieba under Anaconda pytorch
Bert install no package metadata was found for the 'sacraments' distribution
剑指 Offer II 029. 排序的循环链表
Low code momentum, this information management system development artifact, you deserve it!