当前位置:网站首页>[the Nine Yang Manual] 2018 Fudan University Applied Statistics real problem + analysis
[the Nine Yang Manual] 2018 Fudan University Applied Statistics real problem + analysis
2022-07-06 13:30:00 【Elder martial brother statistics】
Catalog
The real part
One 、(20 branch ) from 1-10 Don't put it back 3 A digital , Find the following probability
(1)(5 branch ) The minimum number is 5;
(2)(5 branch ) The biggest number is 5;
(3)(5 branch ) At least one is less than 6;
(4)(5 branch ) One less than 5, One is equal to 5, One is greater than 5.
Two 、(15 branch ) You are trying again. The probability of success is p p p Events , Don't stop until there are two consecutive successes or two failures , Please take the probability of two successful stops .
3、 ... and 、(15 branch ) Find binomial distribution , ( a , b ) (a,b) (a,b) Evenly distributed , Expectation and variance of gamma distribution .
Four 、(20 branch ) prove E ( X 2 ) < ∞ E\left(X^{2}\right)<\infty E(X2)<∞ The necessary and sufficient condition of is the series ∑ n P ( ∣ X ∣ > n ) \sum n P(|X|>n) ∑nP(∣X∣>n) convergence .
5、 ... and 、(20 branch ) X 1 , X 2 , X 3 X_{1}, X_{2}, X_{3} X1,X2,X3 Is taken from the expectation that α \alpha α Random samples of exponential distribution , Find the probability P ( X 1 < X 2 < X 3 ) P\left(X_{1}<X_{2}<X_{3}\right) P(X1<X2<X3) as well as X ( 1 ) X_{(1)} X(1) Probability density of .
6、 ... and 、(20 branch ) P ( X i = − 0.3 ) = P ( X i = 0.4 ) = 1 2 , i = 1 , 2 , … , n , P\left(X_{i}=-0.3\right)=P\left(X_{i}=0.4\right)=\frac{1}{2}, i=1,2, \ldots, n, P(Xi=−0.3)=P(Xi=0.4)=21,i=1,2,…,n, Are independent of each other , Construct a sequence of random variables Y n = ∏ i = 1 n ( X i + 1 ) , Y_{n}=\prod_{i=1}^{n}\left(X_{i}+1\right), Yn=∏i=1n(Xi+1), seek Y n Y_{n} Yn And prove Y n Y_{n} Yn Expectations tend to be infinite .
7、 ... and 、(20 branch ) There is a pile of balls : 2 red , 3 black , 4 white . Touch a ball randomly , If it's black, remember that you win , If it's other colors , Some people put it back and continue to touch the ball , Until the color or black appears repeatedly , If there is the color you touch for the first time , Then you win , Otherwise you lose . Please ask the probability of winning .
8、 ... and 、(20 branch )
(1)(10 branch ) Explain consistency estimates ;
(2)(10 branch ) X 1 , … , X n X_{1}, \ldots, X_{n} X1,…,Xn It is a sample from the same population , Write a consistent estimate of the median , And explain why .
The analysis part
One 、(20 branch ) from 1-10 Don't put it back 3 A digital , Find the following probability
(1)(5 branch ) The minimum number is 5;
(2)(5 branch ) The biggest number is 5;
(3)(5 branch ) At least one is less than 6;
(4)(5 branch ) One less than 5, One is equal to 5, One is greater than 5.
Solution:
(1) # Ω = C 10 3 = 120 \# \Omega=C_{10}^{3}=120 #Ω=C103=120, #A A 1 = 1 ⋅ C 5 2 = 10 , P ( A 1 ) = # A 1 # Ω = 1 12 A_{1}=1 \cdot C_{5}^{2}=10, P\left(A_{1}\right)=\frac{\# A_{1}}{\# \Omega}=\frac{1}{12} A1=1⋅C52=10,P(A1)=#Ω#A1=121.
(2) # A 2 = 1 ⋅ C 4 2 = 6 , P ( A 2 ) = # A 2 # Ω = 1 20 \# A_{2}=1 \cdot C_{4}^{2}=6, P\left(A_{2}\right)=\frac{\# A_{2}}{\# \Omega}=\frac{1}{20} #A2=1⋅C42=6,P(A2)=#Ω#A2=201.
(3) # A 3 ‾ = C 5 3 = 10 , P ( A 3 ) = 1 − # A 3 ‾ # Ω = 11 12 \# \overline{A_{3}}=C_{5}^{3}=10, P\left(A_{3}\right)=1-\frac{\# \overline{A_{3}}}{\# \Omega}=\frac{11}{12} #A3=C53=10,P(A3)=1−#Ω#A3=1211.
(4) # A 4 = 4 ⋅ 1 ⋅ 5 = 20 , P ( A 4 ) = # A 4 # Ω = 1 6 \# A_{4}=4 \cdot 1 \cdot 5=20, P\left(A_{4}\right)=\frac{\# A_{4}}{\# \Omega}=\frac{1}{6} #A4=4⋅1⋅5=20,P(A4)=#Ω#A4=61.
Two 、(15 branch ) You are trying again. The probability of success is p p p Events , Don't stop until there are two consecutive successes or two failures , Please With the probability of two successful stops .
Solution:
set up A A A “ Stop successfully twice ”", p 0 = P ( A ) , p 1 = P ( A ∣ p_{0}=P(A), p_{1}=P(A \mid p0=P(A),p1=P(A∣ For the first time ) , p − 1 = P ), p_{-1}=P ),p−1=P ( A ∣ A \mid A∣ The first failure ) ) ), According to the full probability formula : { p 0 = p 1 ⋅ p + p − 1 ⋅ ( 1 − p ) p 1 = p + p − 1 ⋅ ( 1 − p ) p − 1 = p 1 ⋅ p \left\{\begin{array}{l} p_{0}=p_{1} \cdot p+p_{-1} \cdot(1-p) \\ p_{1}=p+p_{-1} \cdot(1-p) \\ p_{-1}=p_{1} \cdot p \end{array}\right. ⎩⎨⎧p0=p1⋅p+p−1⋅(1−p)p1=p+p−1⋅(1−p)p−1=p1⋅p Solution p 0 = p 2 ( 2 − p ) 1 − p ( 1 − p ) p_{0}=\frac{p^{2}(2-p)}{1-p(1-p)} p0=1−p(1−p)p2(2−p).
3、 ... and 、(15 branch ) Find binomial distribution , ( a , b ) (a,b) (a,b) Evenly distributed , Expectation and variance of gamma distribution .
Solution:
(1) The binomial distribution : X ∼ B ( n , p ) , P ( X = k ) = C n k p k ( 1 − p ) n − k , k = 0 , 1 , … , n X \sim B(n, p), P(X=k)=C_{n}^{k} p^{k}(1-p)^{n-k}, k=0,1, \ldots, n X∼B(n,p),P(X=k)=Cnkpk(1−p)n−k,k=0,1,…,n,
E X = ∑ k = 0 n k n ! k ! ( n − k ) ! p k ( 1 − p ) n − k = n p ∑ k = 1 n ( n − 1 ) ! ( k − 1 ) ! ( n − k ) ! p k − 1 ( 1 − p ) n − k = n p , E X=\sum_{k=0}^{n} k \frac{n !}{k !(n-k) !} p^{k}(1-p)^{n-k}=n p \sum_{k=1}^{n} \frac{(n-1) !}{(k-1) !(n-k) !} p^{k-1}(1-p)^{n-k}=n p, EX=k=0∑nkk!(n−k)!n!pk(1−p)n−k=npk=1∑n(k−1)!(n−k)!(n−1)!pk−1(1−p)n−k=np,
E X ( X − 1 ) = ∑ k = 0 n k ( k − 1 ) C n k p k ( 1 − p ) n − k = n ( n − 1 ) p 2 ∑ k = 2 n C n − 2 k − 2 p k − 2 ( 1 − p ) n − k = n ( n − 1 ) p 2 , E X(X-1)=\sum_{k=0}^{n} k(k-1) C_{n}^{k} p^{k}(1-p)^{n-k}=n(n-1) p^{2} \sum_{k=2}^{n} C_{n-2}^{k-2} p^{k-2}(1-p)^{n-k}=n(n-1) p^{2}, EX(X−1)=k=0∑nk(k−1)Cnkpk(1−p)n−k=n(n−1)p2k=2∑nCn−2k−2pk−2(1−p)n−k=n(n−1)p2,
therefore E X 2 = n ( n − 1 ) p 2 + n p , D X = E X 2 − ( E X ) 2 = n ( n − 1 ) p 2 + n p − n 2 p 2 = n p ( 1 − p ) E X^{2}=n(n-1) p^{2}+n p, D X=E X^{2}-(E X)^{2}=n(n-1) p^{2}+n p-n^{2} p^{2}=n p(1-p) EX2=n(n−1)p2+np,DX=EX2−(EX)2=n(n−1)p2+np−n2p2=np(1−p).(2) Uniform distribution : X ∼ U ( a , b ) , f ( x ) = 1 b − a , a < x < b X \sim U(a, b), f(x)=\frac{1}{b-a}, a<x<b X∼U(a,b),f(x)=b−a1,a<x<b,
E X = ∫ a b x b − a d x = a + b 2 , D X = ∫ a b ( x − a + b 2 ) 2 1 b − a d x = ( b − a ) 2 12 . E X=\int_{a}^{b} \frac{x}{b-a} d x=\frac{a+b}{2}, D X=\int_{a}^{b}\left(x-\frac{a+b}{2}\right)^{2} \frac{1}{b-a} d x=\frac{(b-a)^{2}}{12} . EX=∫abb−axdx=2a+b,DX=∫ab(x−2a+b)2b−a1dx=12(b−a)2.
(3) Gamma distribution : X ∼ G a ( α , λ ) , f ( x ) = λ α Γ ( α ) x α − 1 e − λ x , x > 0 X \sim G a(\alpha, \lambda), f(x)=\frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\lambda x}, x>0 X∼Ga(α,λ),f(x)=Γ(α)λαxα−1e−λx,x>0,
E X = ∫ 0 + ∞ λ α Γ ( α ) x α e − λ x d x = 1 λ Γ ( α ) ∫ 0 + ∞ ( λ x ) α e − λ x d ( λ x ) = Γ ( α + 1 ) λ Γ ( α ) = α λ , E X=\int_{0}^{+\infty} \frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha} e^{-\lambda x} d x=\frac{1}{\lambda \Gamma(\alpha)} \int_{0}^{+\infty}(\lambda x)^{\alpha} e^{-\lambda x} d(\lambda x)=\frac{\Gamma(\alpha+1)}{\lambda \Gamma(\alpha)}=\frac{\alpha}{\lambda}, EX=∫0+∞Γ(α)λαxαe−λxdx=λΓ(α)1∫0+∞(λx)αe−λxd(λx)=λΓ(α)Γ(α+1)=λα,
E X 2 = ∫ 0 + ∞ λ α Γ ( α ) x α + 1 e − λ x d x = 1 λ 2 Γ ( α ) ∫ 0 + ∞ ( λ x ) α + 1 e − λ x d ( λ x ) = Γ ( α + 2 ) λ 2 Γ ( α ) = α ( α + 1 ) λ E X^{2}=\int_{0}^{+\infty} \frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha+1} e^{-\lambda x} d x=\frac{1}{\lambda^{2} \Gamma(\alpha)} \int_{0}^{+\infty}(\lambda x)^{\alpha+1} e^{-\lambda x} d(\lambda x)=\frac{\Gamma(\alpha+2)}{\lambda^{2} \Gamma(\alpha)}=\frac{\alpha(\alpha+1)}{\lambda} EX2=∫0+∞Γ(α)λαxα+1e−λxdx=λ2Γ(α)1∫0+∞(λx)α+1e−λxd(λx)=λ2Γ(α)Γ(α+2)=λα(α+1),
so D X = E X 2 − ( E X ) 2 = α ( α + 1 ) λ 2 − α 2 λ 2 = α λ 2 . D X=E X^{2}-(E X)^{2}=\frac{\alpha(\alpha+1)}{\lambda^{2}}-\frac{\alpha^{2}}{\lambda^{2}}=\frac{\alpha}{\lambda^{2}} . DX=EX2−(EX)2=λ2α(α+1)−λ2α2=λ2α.
Four 、(20 branch ) prove E ( X 2 ) < ∞ E\left(X^{2}\right)<\infty E(X2)<∞ The necessary and sufficient condition of is the series ∑ n P ( ∣ X ∣ > n ) \sum n P(|X|>n) ∑nP(∣X∣>n) convergence .
Solution:
(1) First explain E ∣ X ∣ < + ∞ E|X|<+\infty E∣X∣<+∞ The necessary and sufficient condition of is the series ∑ n = 1 ∞ P ( ∣ X ∣ > n ) \sum_{n=1}^{\infty} P(|X|>n) ∑n=1∞P(∣X∣>n) convergence : because ∑ n = 1 ∞ P ( ∣ X ∣ > n ) = ∑ n = 1 ∞ ∑ k = n ∞ P ( k < ∣ X ∣ ≤ k + 1 ) = ∑ k = 1 ∞ ∑ n = 1 k P ( k < ∣ X ∣ ≤ k + 1 ) = ∑ k = 1 ∞ k P ( k < ∣ X ∣ ≤ k + 1 ) \begin{aligned} \sum_{n=1}^{\infty} P(|X|>n) &=\sum_{n=1}^{\infty} \sum_{k=n}^{\infty} P(k<|X| \leq k+1) \\ &=\sum_{k=1}^{\infty} \sum_{n=1}^{k} P(k<|X| \leq k+1) \\ &=\sum_{k=1}^{\infty} k P(k<|X| \leq k+1) \end{aligned} n=1∑∞P(∣X∣>n)=n=1∑∞k=n∑∞P(k<∣X∣≤k+1)=k=1∑∞n=1∑kP(k<∣X∣≤k+1)=k=1∑∞kP(k<∣X∣≤k+1) At the same time, by the comparison and discrimination of positive series , Superior number and ∑ k = 1 ∞ ( k + 1 ) P ( k < ∣ X ∣ ≤ k + 1 ) \sum_{k=1}^{\infty}(k+1) P(k<|X| \leq k+1) ∑k=1∞(k+1)P(k<∣X∣≤k+1) It is also convergent and scattered , in consideration of E ∣ X ∣ = ∫ 0 + ∞ x d F ∣ X ∣ ( x ) E|X|=\int_{0}^{+\infty} x d F_{|X|}(x) E∣X∣=∫0+∞xdF∣X∣(x), On the one hand ∫ 0 + ∞ x d F ∣ X ∣ ( x ) = ∑ k = 0 ∞ ∫ k k + 1 x d F ∣ X ∣ ( x ) ≤ ∑ k = 0 ∞ ∫ k k + 1 ( k + 1 ) d F ∣ X ∣ ( x ) = ∑ k = 0 ∞ ( k + 1 ) P ( k < ∣ X ∣ ≤ k + 1 ) , \begin{aligned} \int_{0}^{+\infty} x d F_{|X|}(x) &=\sum_{k=0}^{\infty} \int_{k}^{k+1} x d F_{|X|}(x) \\ & \leq \sum_{k=0}^{\infty} \int_{k}^{k+1}(k+1) d F_{|X|}(x) \\ &=\sum_{k=0}^{\infty}(k+1) P(k<|X| \leq k+1), \end{aligned} ∫0+∞xdF∣X∣(x)=k=0∑∞∫kk+1xdF∣X∣(x)≤k=0∑∞∫kk+1(k+1)dF∣X∣(x)=k=0∑∞(k+1)P(k<∣X∣≤k+1), On the other hand, there are
∫ 0 + ∞ x d F ∣ X ∣ ( x ) = ∑ k = 0 ∞ ∫ k k + 1 x d F ∣ X ∣ ( x ) ≥ ∑ k = 0 ∞ ∫ k k + 1 k d F ∣ X ∣ ( x ) = ∑ k = 0 ∞ k P ( k < ∣ X ∣ ≤ k + 1 ) , \begin{aligned} \int_{0}^{+\infty} x d F_{|X|}(x) &=\sum_{k=0}^{\infty} \int_{k}^{k+1} x d F_{|X|}(x) \\ & \geq \sum_{k=0}^{\infty} \int_{k}^{k+1} k d F_{|X|}(x) \\ &=\sum_{k=0}^{\infty} k P(k<|X| \leq k+1), \end{aligned} ∫0+∞xdF∣X∣(x)=k=0∑∞∫kk+1xdF∣X∣(x)≥k=0∑∞∫kk+1kdF∣X∣(x)=k=0∑∞kP(k<∣X∣≤k+1), in summary , E ∣ X ∣ < + ∞ E|X|<+\infty E∣X∣<+∞ The necessary and sufficient condition of is the series ∑ n = 1 ∞ P ( ∣ X ∣ > n ) \sum_{n=1}^{\infty} P(|X|>n) ∑n=1∞P(∣X∣>n) convergence .(2) Further explanation E X 2 < + ∞ E X^{2}<+\infty EX2<+∞ The necessary and sufficient condition of is the series ∑ n = 1 + ∞ n P ( ∣ X ∣ > n ) \sum_{n=1}^{+\infty} n P(|X|>n) ∑n=1+∞nP(∣X∣>n) convergence : because ∑ n = 1 ∞ n P ( ∣ X ∣ > n ) = ∑ n = 1 ∞ ∑ k = n ∞ n P ( k < ∣ X ∣ ≤ k + 1 ) = ∑ k = 1 ∞ ∑ n = 1 ∞ n P ( k < ∣ X ∣ ≤ k + 1 ) = ∑ k = 1 ∞ k ( k + 1 ) 2 P ( k < ∣ X ∣ ≤ k + 1 ) \begin{aligned} \sum_{n=1}^{\infty} n P(|X|>n) &=\sum_{n=1}^{\infty} \sum_{k=n}^{\infty} n P(k<|X| \leq k+1) \\ &=\sum_{k=1}^{\infty} \sum_{n=1}^{\infty} n P(k<|X| \leq k+1) \\ &=\sum_{k=1}^{\infty} \frac{k(k+1)}{2} P(k<|X| \leq k+1) \end{aligned} n=1∑∞nP(∣X∣>n)=n=1∑∞k=n∑∞nP(k<∣X∣≤k+1)=k=1∑∞n=1∑∞nP(k<∣X∣≤k+1)=k=1∑∞2k(k+1)P(k<∣X∣≤k+1) At the same time, by the comparison and discrimination of positive series , The convergence and divergence of the above formula is obviously equivalent to ∑ n = 1 ∞ n 2 P ( n < ∣ X ∣ ≤ n + 1 ) \sum_{n=1}^{\infty} n^{2} P(n<|X| \leq n+1) ∑n=1∞n2P(n<∣X∣≤n+1) Convergence and divergence of , It's also equivalent to ∑ n = 1 ∞ ( n + 1 ) 2 P ( n < ∣ X ∣ ≤ n + 1 ) \sum_{n=1}^{\infty}(n+1)^{2} P(n<|X| \leq n+1) ∑n=1∞(n+1)2P(n<∣X∣≤n+1) Convergence and divergence of , Also with the help of second-order moment determination Semantic formula E X 2 = ∫ 0 + ∞ x 2 d F ∣ X ∣ ( x ) E X^{2}=\int_{0}^{+\infty} x^{2} d F_{|X|}(x) EX2=∫0+∞x2dF∣X∣(x), On the one hand ∫ 0 + ∞ x 2 d F ∣ X ∣ ( x ) = ∑ n = 0 ∞ ∫ n n + 1 x 2 d F ∣ X ∣ ( x ) ≤ ∑ n = 0 ∞ ∫ n n + 1 ( n + 1 ) 2 d F ∣ X ∣ ( x ) = ∑ n = 0 ∞ ( n + 1 ) 2 P ( n < ∣ X ∣ ≤ n + 1 ) \begin{aligned} \int_{0}^{+\infty} x^{2} d F_{|X|}(x) &=\sum_{n=0}^{\infty} \int_{n}^{n+1} x^{2} d F_{|X|}(x) \\ & \leq \sum_{n=0}^{\infty} \int_{n}^{n+1}(n+1)^{2} d F_{|X|}(x) \\ &=\sum_{n=0}^{\infty}(n+1)^{2} P(n<|X| \leq n+1) \end{aligned} ∫0+∞x2dF∣X∣(x)=n=0∑∞∫nn+1x2dF∣X∣(x)≤n=0∑∞∫nn+1(n+1)2dF∣X∣(x)=n=0∑∞(n+1)2P(n<∣X∣≤n+1)
On the other hand, there are ∫ 0 + ∞ x 2 d F ∣ X ∣ ( x ) = ∑ n = 0 ∞ ∫ n n + 1 x 2 d F ∣ X ∣ ( x ) ≤ ∑ n = 0 ∞ ∫ n n + 1 n 2 d F ∣ X ∣ ( x ) = ∑ n = 0 ∞ n 2 P ( n < ∣ X ∣ ≤ n + 1 ) , \begin{aligned} \int_{0}^{+\infty} x^{2} d F_{|X|}(x) &=\sum_{n=0}^{\infty} \int_{n}^{n+1} x^{2} d F_{|X|}(x) \\ & \leq \sum_{n=0}^{\infty} \int_{n}^{n+1} n^{2} d F_{|X|}(x) \\ &=\sum_{n=0}^{\infty} n^{2} P(n<|X| \leq n+1), \end{aligned} ∫0+∞x2dF∣X∣(x)=n=0∑∞∫nn+1x2dF∣X∣(x)≤n=0∑∞∫nn+1n2dF∣X∣(x)=n=0∑∞n2P(n<∣X∣≤n+1), in summary , E X 2 < + ∞ E X^{2}<+\infty EX2<+∞ The necessary and sufficient condition of is the series ∑ n = 1 + ∞ n P ( ∣ X ∣ > n ) \sum_{n=1}^{+\infty} n P(|X|>n) ∑n=1+∞nP(∣X∣>n) convergence .
5、 ... and 、(20 branch ) X 1 , X 2 , X 3 X_{1}, X_{2}, X_{3} X1,X2,X3 Is taken from the expectation that α \alpha α Random samples of exponential distribution , Find the probability P ( X 1 < X 2 < X 3 ) P\left(X_{1}<X_{2}<X_{3}\right) P(X1<X2<X3) as well as X ( 1 ) X_{(1)} X(1) Probability density of .
Solution:
According to the rotation symmetry , P ( X 1 < X 2 < X 3 ) = 1 6 P\left(X_{1}<X_{2}<X_{3}\right)=\frac{1}{6} P(X1<X2<X3)=61. Make Y = X ( 1 ) Y=X_{(1)} Y=X(1), Then when y > 0 y>0 y>0 when , 1 − F ( y ) = P { Y > y } = P 3 { X 1 > y } = e − 3 α y 1-F(y)=P\{Y>y\}=P^{3}\left\{X_{1}>y\right\}=e^{-\frac{3}{\alpha} y} 1−F(y)=P{ Y>y}=P3{ X1>y}=e−α3y, so f ( y ) = 3 α e − 3 α y , y > 0 f(y)=\frac{3}{\alpha} e^{-\frac{3}{\alpha} y}, y>0 f(y)=α3e−α3y,y>0. This happens to be Exp ( 3 α ) \operatorname{Exp}\left(\frac{3}{\alpha}\right) Exp(α3).
6、 ... and 、(20 branch ) P ( X i = − 0.3 ) = P ( X i = 0.4 ) = 1 2 , i = 1 , 2 , … , n , P\left(X_{i}=-0.3\right)=P\left(X_{i}=0.4\right)=\frac{1}{2}, i=1,2, \ldots, n, P(Xi=−0.3)=P(Xi=0.4)=21,i=1,2,…,n, Are independent of each other , Construct a sequence of random variables Y n = ∏ i = 1 n ( X i + 1 ) , Y_{n}=\prod_{i=1}^{n}\left(X_{i}+1\right), Yn=∏i=1n(Xi+1), seek Y n Y_{n} Yn And prove Y n Y_{n} Yn Expectations tend to be infinite .
Solution:
By strong law of numbers , 1 n ln Y n = 1 n ∑ i = 1 n ln ( X i + 1 ) * a.s. E ln ( X 1 + 1 ) = 1 2 ln 0.98 < 0 \frac{1}{n} \ln Y_{n}=\frac{1}{n} \sum_{i=1}^{n} \ln \left(X_{i}+1\right) \stackrel{\text { a.s. }}{\longrightarrow} E \ln \left(X_{1}+1\right)=\frac{1}{2} \ln 0.98<0 n1lnYn=n1∑i=1nln(Xi+1)* a.s. Eln(X1+1)=21ln0.98<0, so ln Y n * a.s. − ∞ , Y n * a.s. 0 \ln Y_{n} \stackrel{\text { a.s. }}{\longrightarrow}-\infty, Y_{n} \stackrel{\text { a.s. }}{\longrightarrow} 0 lnYn* a.s. −∞,Yn* a.s. 0, therefore Y n Y_{n} Yn The limit of is the single point distribution , With probability 1 take 0 . and E Y n = ∏ i = 1 n E ( X i + 1 ) = ∏ i = 1 n ( 0.7 + 1.4 2 ) = 1.0 5 n → + ∞ . E Y_{n}=\prod_{i=1}^{n} E\left(X_{i}+1\right)=\prod_{i=1}^{n}\left(\frac{0.7+1.4}{2}\right)=1.05^{n} \rightarrow+\infty. EYn=i=1∏nE(Xi+1)=i=1∏n(20.7+1.4)=1.05n→+∞.
7、 ... and 、(20 branch ) There is a pile of balls : 2 red , 3 black , 4 white . Touch a ball randomly , If it's black, remember that you win , If it's other colors , Some people put it back and continue to touch the ball , Until the color or black appears repeatedly , If there is the color you touch for the first time , Then you win , Otherwise you lose . Please ask the probability of winning .
Solution:
set up A k A_k Ak For the first time k k k The probability of winning the first time , The result to be found is P ( A ) = P ( ⋃ k = 1 ∞ A k ) = ∑ k = 1 ∞ P ( A k ) P(A)=P(\bigcup_{k=1}^{\infty}A_k)=\sum_{k=1}^{\infty}P(A_k) P(A)=P(⋃k=1∞Ak)=∑k=1∞P(Ak).
(i) The probability of winning for the first time P ( A 1 ) = 1 3 P(A_1)=\frac{1}{3} P(A1)=31.
(ii) The first k k k Second win ( k > 1 k>1 k>1) indicate : I didn't touch the black ball for the first time , Follow up 2 , 3 , . . . , k − 1 2,3,...,k-1 2,3,...,k−1 I didn't touch black for the first time, and I didn't touch the color you touched for the first time , Last k k k I touched the original color for the first time , This probability must be related to the color you first touch , Consider the full probability formula P ( A k ) = P ( R ) P ( A k ∣ R ) + P ( W ) P ( A k ∣ W ) P(A_k)=P(R)P(A_k|R)+P(W)P(A_k|W) P(Ak)=P(R)P(Ak∣R)+P(W)P(Ak∣W), among R R R It means touching red , W W W It means feeling white , Yes
P ( A k ∣ R ) = ( 4 9 ) k − 2 2 9 , P ( A k ∣ W ) = ( 2 9 ) k − 2 4 9 . P\left( A_k|R \right) =\left( \frac{4}{9} \right) ^{k-2}\frac{2}{9},\quad P\left( A_k\mid W \right) =\left( \frac{2}{9} \right) ^{k-2}\frac{4}{9}. P(Ak∣R)=(94)k−292,P(Ak∣W)=(92)k−294. therefore P ( A k ) = P ( R ) 2 9 ( 4 9 ) k − 2 + P ( W ) 4 9 ( 2 9 ) k − 2 = 4 81 ( 4 9 ) k − 2 + 16 81 ( 2 9 ) k − 2 . P\left( A_k \right) =P\left( R \right) \frac{2}{9}\left( \frac{4}{9} \right) ^{k-2}+P\left( W \right) \frac{4}{9}\left( \frac{2}{9} \right) ^{k-2}=\frac{4}{81}\left( \frac{4}{9} \right) ^{k-2}+\frac{16}{81}\left( \frac{2}{9} \right) ^{k-2}. P(Ak)=P(R)92(94)k−2+P(W)94(92)k−2=814(94)k−2+8116(92)k−2. In sum , Yes
P ( A ) = P ( A 1 ) + 4 81 ( 1 − 4 9 ) + 16 81 ( 1 − 2 9 ) = 1 3 + 4 45 + 16 63 = 71 105 . P\left( A \right) =P\left( A_1 \right) +\frac{4}{81\left( 1-\frac{4}{9} \right)}+\frac{16}{81\left( 1-\frac{2}{9} \right)}=\frac{1}{3}+\frac{4}{45}+\frac{16}{63}=\frac{71}{105}. P(A)=P(A1)+81(1−94)4+81(1−92)16=31+454+6316=10571.
8、 ... and 、(20 branch )
(1)(10 branch ) Explain consistency estimates ;
(2)(10 branch ) X 1 , … , X n X_{1}, \ldots, X_{n} X1,…,Xn It is a sample from the same population , Write a consistent estimate of the median , And explain why .
Solution:
(1) g ^ \hat{g} g^ yes g g g The consistent estimate of means g ^ → p g \hat{g} \stackrel{p}{\rightarrow} g g^→pg, This illustrates the g ^ \hat{g} g^ Is a good estimate , At least in the sample size n n n large , It deviates g g g The probability is very small . Further more , if g ^ \hat{g} g^ yes g g g The strong consistency estimate of means g ^ * a.s. g \hat{g} \stackrel{\text { a.s. }}{\longrightarrow} g g^* a.s. g.(2) Sample median X [ n 2 ] X_{\left[\frac{n}{2}\right]} X[2n] Is the overall median x 0.5 x_{0.5} x0.5 The consistent estimator of , Let the overall density function be f ( x ) f(x) f(x), Asymptotically normal distribution with sample median X [ n 2 ] ∼ N ( x 0.5 , 1 4 n f 2 ( x 0.5 ) ) , X_{\left[\frac{n}{2}\right]} \sim N\left(x_{0.5}, \frac{1}{4 n f^{2}\left(x_{0.5}\right)}\right), X[2n]∼N(x0.5,4nf2(x0.5)1), From its asymptotic normal distribution, we can get P ( ∣ X [ n 2 ] − x 0.5 ∣ < ε ) = P ( 2 n f ( x 0.5 ) ∣ X [ n 2 ] − x 0.5 ∣ < 2 n f ( x 0.5 ) ε ) ∼ Φ ( 2 n f ( x 0.5 ) ε ) − Φ ( − 2 n f ( x 0.5 ) ε ) → 1. P\left( \left| X_{\left[ \frac{n}{2} \right]}-x_{0.5} \right|<\varepsilon \right) =P\left( 2\sqrt{n}f\left( x_{0.5} \right) \left| X_{\left[ \frac{n}{2} \right]}-x_{0.5} \right|<2\sqrt{n}f\left( x_{0.5} \right) \varepsilon \right) \sim \Phi \left( 2\sqrt{n}f\left( x_{0.5} \right) \varepsilon \right) -\Phi \left( -2\sqrt{n}f\left( x_{0.5} \right) \varepsilon \right) \rightarrow 1. P(∣∣∣X[2n]−x0.5∣∣∣<ε)=P(2nf(x0.5)∣∣∣X[2n]−x0.5∣∣∣<2nf(x0.5)ε)∼Φ(2nf(x0.5)ε)−Φ(−2nf(x0.5)ε)→1. The above formula shows the median of the sample X [ n 2 ] X_{\left[\frac{n}{2}\right]} X[2n] Is the overall median x 0.5 x_{0.5} x0.5 The consistent estimator of .
边栏推荐
- E-R graph to relational model of the 2022 database of tyut Taiyuan University of Technology
- Smart classroom solution and mobile teaching concept description
- Atomic and nonatomic
- 【九阳神功】2022复旦大学应用统计真题+解析
- Questions and answers of "Fundamentals of RF circuits" in the first semester of the 22nd academic year of Xi'an University of Electronic Science and technology
- [Topic terminator]
- MPLS experiment
- 5.函数递归练习
- Tyut Taiyuan University of technology 2022 introduction to software engineering summary
- 用栈实现队列
猜你喜欢

Introduction and use of redis

8.C语言——位操作符与位移操作符

3. Number guessing game

The latest tank battle 2022 - Notes on the whole development -2

Arduino+ water level sensor +led display + buzzer alarm

TYUT太原理工大学2022数据库大题之分解关系模式

Questions and answers of "basic experiment" in the first semester of the 22nd academic year of Xi'an University of Electronic Science and technology

Inheritance and polymorphism (Part 2)

8. C language - bit operator and displacement operator

View UI Plus 发布 1.3.0 版本,新增 Space、$ImagePreview 组件
随机推荐
Questions and answers of "signal and system" in the first semester of the 22nd academic year of Xi'an University of Electronic Science and technology
arduino+DS18B20温度传感器(蜂鸣器报警)+LCD1602显示(IIC驱动)
FileInputStream和BufferedInputStream的比较
【九阳神功】2016复旦大学应用统计真题+解析
5. Download and use of MSDN
Inheritance and polymorphism (Part 2)
TYUT太原理工大学2022数据库大题之数据库操作
【九阳神功】2019复旦大学应用统计真题+解析
(超详细二)onenet数据可视化详解,如何用截取数据流绘图
CorelDRAW plug-in -- GMS plug-in development -- Introduction to VBA -- GMS plug-in installation -- Security -- macro Manager -- CDR plug-in (I)
Implement queue with stack
3.输入和输出函数(printf、scanf、getchar和putchar)
西安电子科技大学22学年上学期《基础实验》试题及答案
4.30 dynamic memory allocation notes
First acquaintance with C language (Part 2)
6.函数的递归
The overseas sales of Xiaomi mobile phones are nearly 140million, which may explain why Xiaomi ov doesn't need Hongmeng
165. Compare version number - string
5.MSDN的下载和使用
Tyut Taiyuan University of technology 2022 "Mao Gai" must be recited