当前位置:网站首页>[the Nine Yang Manual] 2018 Fudan University Applied Statistics real problem + analysis
[the Nine Yang Manual] 2018 Fudan University Applied Statistics real problem + analysis
2022-07-06 13:30:00 【Elder martial brother statistics】
Catalog
The real part
One 、(20 branch ) from 1-10 Don't put it back 3 A digital , Find the following probability
(1)(5 branch ) The minimum number is 5;
(2)(5 branch ) The biggest number is 5;
(3)(5 branch ) At least one is less than 6;
(4)(5 branch ) One less than 5, One is equal to 5, One is greater than 5.
Two 、(15 branch ) You are trying again. The probability of success is p p p Events , Don't stop until there are two consecutive successes or two failures , Please take the probability of two successful stops .
3、 ... and 、(15 branch ) Find binomial distribution , ( a , b ) (a,b) (a,b) Evenly distributed , Expectation and variance of gamma distribution .
Four 、(20 branch ) prove E ( X 2 ) < ∞ E\left(X^{2}\right)<\infty E(X2)<∞ The necessary and sufficient condition of is the series ∑ n P ( ∣ X ∣ > n ) \sum n P(|X|>n) ∑nP(∣X∣>n) convergence .
5、 ... and 、(20 branch ) X 1 , X 2 , X 3 X_{1}, X_{2}, X_{3} X1,X2,X3 Is taken from the expectation that α \alpha α Random samples of exponential distribution , Find the probability P ( X 1 < X 2 < X 3 ) P\left(X_{1}<X_{2}<X_{3}\right) P(X1<X2<X3) as well as X ( 1 ) X_{(1)} X(1) Probability density of .
6、 ... and 、(20 branch ) P ( X i = − 0.3 ) = P ( X i = 0.4 ) = 1 2 , i = 1 , 2 , … , n , P\left(X_{i}=-0.3\right)=P\left(X_{i}=0.4\right)=\frac{1}{2}, i=1,2, \ldots, n, P(Xi=−0.3)=P(Xi=0.4)=21,i=1,2,…,n, Are independent of each other , Construct a sequence of random variables Y n = ∏ i = 1 n ( X i + 1 ) , Y_{n}=\prod_{i=1}^{n}\left(X_{i}+1\right), Yn=∏i=1n(Xi+1), seek Y n Y_{n} Yn And prove Y n Y_{n} Yn Expectations tend to be infinite .
7、 ... and 、(20 branch ) There is a pile of balls : 2 red , 3 black , 4 white . Touch a ball randomly , If it's black, remember that you win , If it's other colors , Some people put it back and continue to touch the ball , Until the color or black appears repeatedly , If there is the color you touch for the first time , Then you win , Otherwise you lose . Please ask the probability of winning .
8、 ... and 、(20 branch )
(1)(10 branch ) Explain consistency estimates ;
(2)(10 branch ) X 1 , … , X n X_{1}, \ldots, X_{n} X1,…,Xn It is a sample from the same population , Write a consistent estimate of the median , And explain why .
The analysis part
One 、(20 branch ) from 1-10 Don't put it back 3 A digital , Find the following probability
(1)(5 branch ) The minimum number is 5;
(2)(5 branch ) The biggest number is 5;
(3)(5 branch ) At least one is less than 6;
(4)(5 branch ) One less than 5, One is equal to 5, One is greater than 5.
Solution:
(1) # Ω = C 10 3 = 120 \# \Omega=C_{10}^{3}=120 #Ω=C103=120, #A A 1 = 1 ⋅ C 5 2 = 10 , P ( A 1 ) = # A 1 # Ω = 1 12 A_{1}=1 \cdot C_{5}^{2}=10, P\left(A_{1}\right)=\frac{\# A_{1}}{\# \Omega}=\frac{1}{12} A1=1⋅C52=10,P(A1)=#Ω#A1=121.
(2) # A 2 = 1 ⋅ C 4 2 = 6 , P ( A 2 ) = # A 2 # Ω = 1 20 \# A_{2}=1 \cdot C_{4}^{2}=6, P\left(A_{2}\right)=\frac{\# A_{2}}{\# \Omega}=\frac{1}{20} #A2=1⋅C42=6,P(A2)=#Ω#A2=201.
(3) # A 3 ‾ = C 5 3 = 10 , P ( A 3 ) = 1 − # A 3 ‾ # Ω = 11 12 \# \overline{A_{3}}=C_{5}^{3}=10, P\left(A_{3}\right)=1-\frac{\# \overline{A_{3}}}{\# \Omega}=\frac{11}{12} #A3=C53=10,P(A3)=1−#Ω#A3=1211.
(4) # A 4 = 4 ⋅ 1 ⋅ 5 = 20 , P ( A 4 ) = # A 4 # Ω = 1 6 \# A_{4}=4 \cdot 1 \cdot 5=20, P\left(A_{4}\right)=\frac{\# A_{4}}{\# \Omega}=\frac{1}{6} #A4=4⋅1⋅5=20,P(A4)=#Ω#A4=61.
Two 、(15 branch ) You are trying again. The probability of success is p p p Events , Don't stop until there are two consecutive successes or two failures , Please With the probability of two successful stops .
Solution:
set up A A A “ Stop successfully twice ”", p 0 = P ( A ) , p 1 = P ( A ∣ p_{0}=P(A), p_{1}=P(A \mid p0=P(A),p1=P(A∣ For the first time ) , p − 1 = P ), p_{-1}=P ),p−1=P ( A ∣ A \mid A∣ The first failure ) ) ), According to the full probability formula : { p 0 = p 1 ⋅ p + p − 1 ⋅ ( 1 − p ) p 1 = p + p − 1 ⋅ ( 1 − p ) p − 1 = p 1 ⋅ p \left\{\begin{array}{l} p_{0}=p_{1} \cdot p+p_{-1} \cdot(1-p) \\ p_{1}=p+p_{-1} \cdot(1-p) \\ p_{-1}=p_{1} \cdot p \end{array}\right. ⎩⎨⎧p0=p1⋅p+p−1⋅(1−p)p1=p+p−1⋅(1−p)p−1=p1⋅p Solution p 0 = p 2 ( 2 − p ) 1 − p ( 1 − p ) p_{0}=\frac{p^{2}(2-p)}{1-p(1-p)} p0=1−p(1−p)p2(2−p).
3、 ... and 、(15 branch ) Find binomial distribution , ( a , b ) (a,b) (a,b) Evenly distributed , Expectation and variance of gamma distribution .
Solution:
(1) The binomial distribution : X ∼ B ( n , p ) , P ( X = k ) = C n k p k ( 1 − p ) n − k , k = 0 , 1 , … , n X \sim B(n, p), P(X=k)=C_{n}^{k} p^{k}(1-p)^{n-k}, k=0,1, \ldots, n X∼B(n,p),P(X=k)=Cnkpk(1−p)n−k,k=0,1,…,n,
E X = ∑ k = 0 n k n ! k ! ( n − k ) ! p k ( 1 − p ) n − k = n p ∑ k = 1 n ( n − 1 ) ! ( k − 1 ) ! ( n − k ) ! p k − 1 ( 1 − p ) n − k = n p , E X=\sum_{k=0}^{n} k \frac{n !}{k !(n-k) !} p^{k}(1-p)^{n-k}=n p \sum_{k=1}^{n} \frac{(n-1) !}{(k-1) !(n-k) !} p^{k-1}(1-p)^{n-k}=n p, EX=k=0∑nkk!(n−k)!n!pk(1−p)n−k=npk=1∑n(k−1)!(n−k)!(n−1)!pk−1(1−p)n−k=np,
E X ( X − 1 ) = ∑ k = 0 n k ( k − 1 ) C n k p k ( 1 − p ) n − k = n ( n − 1 ) p 2 ∑ k = 2 n C n − 2 k − 2 p k − 2 ( 1 − p ) n − k = n ( n − 1 ) p 2 , E X(X-1)=\sum_{k=0}^{n} k(k-1) C_{n}^{k} p^{k}(1-p)^{n-k}=n(n-1) p^{2} \sum_{k=2}^{n} C_{n-2}^{k-2} p^{k-2}(1-p)^{n-k}=n(n-1) p^{2}, EX(X−1)=k=0∑nk(k−1)Cnkpk(1−p)n−k=n(n−1)p2k=2∑nCn−2k−2pk−2(1−p)n−k=n(n−1)p2,
therefore E X 2 = n ( n − 1 ) p 2 + n p , D X = E X 2 − ( E X ) 2 = n ( n − 1 ) p 2 + n p − n 2 p 2 = n p ( 1 − p ) E X^{2}=n(n-1) p^{2}+n p, D X=E X^{2}-(E X)^{2}=n(n-1) p^{2}+n p-n^{2} p^{2}=n p(1-p) EX2=n(n−1)p2+np,DX=EX2−(EX)2=n(n−1)p2+np−n2p2=np(1−p).(2) Uniform distribution : X ∼ U ( a , b ) , f ( x ) = 1 b − a , a < x < b X \sim U(a, b), f(x)=\frac{1}{b-a}, a<x<b X∼U(a,b),f(x)=b−a1,a<x<b,
E X = ∫ a b x b − a d x = a + b 2 , D X = ∫ a b ( x − a + b 2 ) 2 1 b − a d x = ( b − a ) 2 12 . E X=\int_{a}^{b} \frac{x}{b-a} d x=\frac{a+b}{2}, D X=\int_{a}^{b}\left(x-\frac{a+b}{2}\right)^{2} \frac{1}{b-a} d x=\frac{(b-a)^{2}}{12} . EX=∫abb−axdx=2a+b,DX=∫ab(x−2a+b)2b−a1dx=12(b−a)2.
(3) Gamma distribution : X ∼ G a ( α , λ ) , f ( x ) = λ α Γ ( α ) x α − 1 e − λ x , x > 0 X \sim G a(\alpha, \lambda), f(x)=\frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\lambda x}, x>0 X∼Ga(α,λ),f(x)=Γ(α)λαxα−1e−λx,x>0,
E X = ∫ 0 + ∞ λ α Γ ( α ) x α e − λ x d x = 1 λ Γ ( α ) ∫ 0 + ∞ ( λ x ) α e − λ x d ( λ x ) = Γ ( α + 1 ) λ Γ ( α ) = α λ , E X=\int_{0}^{+\infty} \frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha} e^{-\lambda x} d x=\frac{1}{\lambda \Gamma(\alpha)} \int_{0}^{+\infty}(\lambda x)^{\alpha} e^{-\lambda x} d(\lambda x)=\frac{\Gamma(\alpha+1)}{\lambda \Gamma(\alpha)}=\frac{\alpha}{\lambda}, EX=∫0+∞Γ(α)λαxαe−λxdx=λΓ(α)1∫0+∞(λx)αe−λxd(λx)=λΓ(α)Γ(α+1)=λα,
E X 2 = ∫ 0 + ∞ λ α Γ ( α ) x α + 1 e − λ x d x = 1 λ 2 Γ ( α ) ∫ 0 + ∞ ( λ x ) α + 1 e − λ x d ( λ x ) = Γ ( α + 2 ) λ 2 Γ ( α ) = α ( α + 1 ) λ E X^{2}=\int_{0}^{+\infty} \frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha+1} e^{-\lambda x} d x=\frac{1}{\lambda^{2} \Gamma(\alpha)} \int_{0}^{+\infty}(\lambda x)^{\alpha+1} e^{-\lambda x} d(\lambda x)=\frac{\Gamma(\alpha+2)}{\lambda^{2} \Gamma(\alpha)}=\frac{\alpha(\alpha+1)}{\lambda} EX2=∫0+∞Γ(α)λαxα+1e−λxdx=λ2Γ(α)1∫0+∞(λx)α+1e−λxd(λx)=λ2Γ(α)Γ(α+2)=λα(α+1),
so D X = E X 2 − ( E X ) 2 = α ( α + 1 ) λ 2 − α 2 λ 2 = α λ 2 . D X=E X^{2}-(E X)^{2}=\frac{\alpha(\alpha+1)}{\lambda^{2}}-\frac{\alpha^{2}}{\lambda^{2}}=\frac{\alpha}{\lambda^{2}} . DX=EX2−(EX)2=λ2α(α+1)−λ2α2=λ2α.
Four 、(20 branch ) prove E ( X 2 ) < ∞ E\left(X^{2}\right)<\infty E(X2)<∞ The necessary and sufficient condition of is the series ∑ n P ( ∣ X ∣ > n ) \sum n P(|X|>n) ∑nP(∣X∣>n) convergence .
Solution:
(1) First explain E ∣ X ∣ < + ∞ E|X|<+\infty E∣X∣<+∞ The necessary and sufficient condition of is the series ∑ n = 1 ∞ P ( ∣ X ∣ > n ) \sum_{n=1}^{\infty} P(|X|>n) ∑n=1∞P(∣X∣>n) convergence : because ∑ n = 1 ∞ P ( ∣ X ∣ > n ) = ∑ n = 1 ∞ ∑ k = n ∞ P ( k < ∣ X ∣ ≤ k + 1 ) = ∑ k = 1 ∞ ∑ n = 1 k P ( k < ∣ X ∣ ≤ k + 1 ) = ∑ k = 1 ∞ k P ( k < ∣ X ∣ ≤ k + 1 ) \begin{aligned} \sum_{n=1}^{\infty} P(|X|>n) &=\sum_{n=1}^{\infty} \sum_{k=n}^{\infty} P(k<|X| \leq k+1) \\ &=\sum_{k=1}^{\infty} \sum_{n=1}^{k} P(k<|X| \leq k+1) \\ &=\sum_{k=1}^{\infty} k P(k<|X| \leq k+1) \end{aligned} n=1∑∞P(∣X∣>n)=n=1∑∞k=n∑∞P(k<∣X∣≤k+1)=k=1∑∞n=1∑kP(k<∣X∣≤k+1)=k=1∑∞kP(k<∣X∣≤k+1) At the same time, by the comparison and discrimination of positive series , Superior number and ∑ k = 1 ∞ ( k + 1 ) P ( k < ∣ X ∣ ≤ k + 1 ) \sum_{k=1}^{\infty}(k+1) P(k<|X| \leq k+1) ∑k=1∞(k+1)P(k<∣X∣≤k+1) It is also convergent and scattered , in consideration of E ∣ X ∣ = ∫ 0 + ∞ x d F ∣ X ∣ ( x ) E|X|=\int_{0}^{+\infty} x d F_{|X|}(x) E∣X∣=∫0+∞xdF∣X∣(x), On the one hand ∫ 0 + ∞ x d F ∣ X ∣ ( x ) = ∑ k = 0 ∞ ∫ k k + 1 x d F ∣ X ∣ ( x ) ≤ ∑ k = 0 ∞ ∫ k k + 1 ( k + 1 ) d F ∣ X ∣ ( x ) = ∑ k = 0 ∞ ( k + 1 ) P ( k < ∣ X ∣ ≤ k + 1 ) , \begin{aligned} \int_{0}^{+\infty} x d F_{|X|}(x) &=\sum_{k=0}^{\infty} \int_{k}^{k+1} x d F_{|X|}(x) \\ & \leq \sum_{k=0}^{\infty} \int_{k}^{k+1}(k+1) d F_{|X|}(x) \\ &=\sum_{k=0}^{\infty}(k+1) P(k<|X| \leq k+1), \end{aligned} ∫0+∞xdF∣X∣(x)=k=0∑∞∫kk+1xdF∣X∣(x)≤k=0∑∞∫kk+1(k+1)dF∣X∣(x)=k=0∑∞(k+1)P(k<∣X∣≤k+1), On the other hand, there are
∫ 0 + ∞ x d F ∣ X ∣ ( x ) = ∑ k = 0 ∞ ∫ k k + 1 x d F ∣ X ∣ ( x ) ≥ ∑ k = 0 ∞ ∫ k k + 1 k d F ∣ X ∣ ( x ) = ∑ k = 0 ∞ k P ( k < ∣ X ∣ ≤ k + 1 ) , \begin{aligned} \int_{0}^{+\infty} x d F_{|X|}(x) &=\sum_{k=0}^{\infty} \int_{k}^{k+1} x d F_{|X|}(x) \\ & \geq \sum_{k=0}^{\infty} \int_{k}^{k+1} k d F_{|X|}(x) \\ &=\sum_{k=0}^{\infty} k P(k<|X| \leq k+1), \end{aligned} ∫0+∞xdF∣X∣(x)=k=0∑∞∫kk+1xdF∣X∣(x)≥k=0∑∞∫kk+1kdF∣X∣(x)=k=0∑∞kP(k<∣X∣≤k+1), in summary , E ∣ X ∣ < + ∞ E|X|<+\infty E∣X∣<+∞ The necessary and sufficient condition of is the series ∑ n = 1 ∞ P ( ∣ X ∣ > n ) \sum_{n=1}^{\infty} P(|X|>n) ∑n=1∞P(∣X∣>n) convergence .(2) Further explanation E X 2 < + ∞ E X^{2}<+\infty EX2<+∞ The necessary and sufficient condition of is the series ∑ n = 1 + ∞ n P ( ∣ X ∣ > n ) \sum_{n=1}^{+\infty} n P(|X|>n) ∑n=1+∞nP(∣X∣>n) convergence : because ∑ n = 1 ∞ n P ( ∣ X ∣ > n ) = ∑ n = 1 ∞ ∑ k = n ∞ n P ( k < ∣ X ∣ ≤ k + 1 ) = ∑ k = 1 ∞ ∑ n = 1 ∞ n P ( k < ∣ X ∣ ≤ k + 1 ) = ∑ k = 1 ∞ k ( k + 1 ) 2 P ( k < ∣ X ∣ ≤ k + 1 ) \begin{aligned} \sum_{n=1}^{\infty} n P(|X|>n) &=\sum_{n=1}^{\infty} \sum_{k=n}^{\infty} n P(k<|X| \leq k+1) \\ &=\sum_{k=1}^{\infty} \sum_{n=1}^{\infty} n P(k<|X| \leq k+1) \\ &=\sum_{k=1}^{\infty} \frac{k(k+1)}{2} P(k<|X| \leq k+1) \end{aligned} n=1∑∞nP(∣X∣>n)=n=1∑∞k=n∑∞nP(k<∣X∣≤k+1)=k=1∑∞n=1∑∞nP(k<∣X∣≤k+1)=k=1∑∞2k(k+1)P(k<∣X∣≤k+1) At the same time, by the comparison and discrimination of positive series , The convergence and divergence of the above formula is obviously equivalent to ∑ n = 1 ∞ n 2 P ( n < ∣ X ∣ ≤ n + 1 ) \sum_{n=1}^{\infty} n^{2} P(n<|X| \leq n+1) ∑n=1∞n2P(n<∣X∣≤n+1) Convergence and divergence of , It's also equivalent to ∑ n = 1 ∞ ( n + 1 ) 2 P ( n < ∣ X ∣ ≤ n + 1 ) \sum_{n=1}^{\infty}(n+1)^{2} P(n<|X| \leq n+1) ∑n=1∞(n+1)2P(n<∣X∣≤n+1) Convergence and divergence of , Also with the help of second-order moment determination Semantic formula E X 2 = ∫ 0 + ∞ x 2 d F ∣ X ∣ ( x ) E X^{2}=\int_{0}^{+\infty} x^{2} d F_{|X|}(x) EX2=∫0+∞x2dF∣X∣(x), On the one hand ∫ 0 + ∞ x 2 d F ∣ X ∣ ( x ) = ∑ n = 0 ∞ ∫ n n + 1 x 2 d F ∣ X ∣ ( x ) ≤ ∑ n = 0 ∞ ∫ n n + 1 ( n + 1 ) 2 d F ∣ X ∣ ( x ) = ∑ n = 0 ∞ ( n + 1 ) 2 P ( n < ∣ X ∣ ≤ n + 1 ) \begin{aligned} \int_{0}^{+\infty} x^{2} d F_{|X|}(x) &=\sum_{n=0}^{\infty} \int_{n}^{n+1} x^{2} d F_{|X|}(x) \\ & \leq \sum_{n=0}^{\infty} \int_{n}^{n+1}(n+1)^{2} d F_{|X|}(x) \\ &=\sum_{n=0}^{\infty}(n+1)^{2} P(n<|X| \leq n+1) \end{aligned} ∫0+∞x2dF∣X∣(x)=n=0∑∞∫nn+1x2dF∣X∣(x)≤n=0∑∞∫nn+1(n+1)2dF∣X∣(x)=n=0∑∞(n+1)2P(n<∣X∣≤n+1)
On the other hand, there are ∫ 0 + ∞ x 2 d F ∣ X ∣ ( x ) = ∑ n = 0 ∞ ∫ n n + 1 x 2 d F ∣ X ∣ ( x ) ≤ ∑ n = 0 ∞ ∫ n n + 1 n 2 d F ∣ X ∣ ( x ) = ∑ n = 0 ∞ n 2 P ( n < ∣ X ∣ ≤ n + 1 ) , \begin{aligned} \int_{0}^{+\infty} x^{2} d F_{|X|}(x) &=\sum_{n=0}^{\infty} \int_{n}^{n+1} x^{2} d F_{|X|}(x) \\ & \leq \sum_{n=0}^{\infty} \int_{n}^{n+1} n^{2} d F_{|X|}(x) \\ &=\sum_{n=0}^{\infty} n^{2} P(n<|X| \leq n+1), \end{aligned} ∫0+∞x2dF∣X∣(x)=n=0∑∞∫nn+1x2dF∣X∣(x)≤n=0∑∞∫nn+1n2dF∣X∣(x)=n=0∑∞n2P(n<∣X∣≤n+1), in summary , E X 2 < + ∞ E X^{2}<+\infty EX2<+∞ The necessary and sufficient condition of is the series ∑ n = 1 + ∞ n P ( ∣ X ∣ > n ) \sum_{n=1}^{+\infty} n P(|X|>n) ∑n=1+∞nP(∣X∣>n) convergence .
5、 ... and 、(20 branch ) X 1 , X 2 , X 3 X_{1}, X_{2}, X_{3} X1,X2,X3 Is taken from the expectation that α \alpha α Random samples of exponential distribution , Find the probability P ( X 1 < X 2 < X 3 ) P\left(X_{1}<X_{2}<X_{3}\right) P(X1<X2<X3) as well as X ( 1 ) X_{(1)} X(1) Probability density of .
Solution:
According to the rotation symmetry , P ( X 1 < X 2 < X 3 ) = 1 6 P\left(X_{1}<X_{2}<X_{3}\right)=\frac{1}{6} P(X1<X2<X3)=61. Make Y = X ( 1 ) Y=X_{(1)} Y=X(1), Then when y > 0 y>0 y>0 when , 1 − F ( y ) = P { Y > y } = P 3 { X 1 > y } = e − 3 α y 1-F(y)=P\{Y>y\}=P^{3}\left\{X_{1}>y\right\}=e^{-\frac{3}{\alpha} y} 1−F(y)=P{ Y>y}=P3{ X1>y}=e−α3y, so f ( y ) = 3 α e − 3 α y , y > 0 f(y)=\frac{3}{\alpha} e^{-\frac{3}{\alpha} y}, y>0 f(y)=α3e−α3y,y>0. This happens to be Exp ( 3 α ) \operatorname{Exp}\left(\frac{3}{\alpha}\right) Exp(α3).
6、 ... and 、(20 branch ) P ( X i = − 0.3 ) = P ( X i = 0.4 ) = 1 2 , i = 1 , 2 , … , n , P\left(X_{i}=-0.3\right)=P\left(X_{i}=0.4\right)=\frac{1}{2}, i=1,2, \ldots, n, P(Xi=−0.3)=P(Xi=0.4)=21,i=1,2,…,n, Are independent of each other , Construct a sequence of random variables Y n = ∏ i = 1 n ( X i + 1 ) , Y_{n}=\prod_{i=1}^{n}\left(X_{i}+1\right), Yn=∏i=1n(Xi+1), seek Y n Y_{n} Yn And prove Y n Y_{n} Yn Expectations tend to be infinite .
Solution:
By strong law of numbers , 1 n ln Y n = 1 n ∑ i = 1 n ln ( X i + 1 ) * a.s. E ln ( X 1 + 1 ) = 1 2 ln 0.98 < 0 \frac{1}{n} \ln Y_{n}=\frac{1}{n} \sum_{i=1}^{n} \ln \left(X_{i}+1\right) \stackrel{\text { a.s. }}{\longrightarrow} E \ln \left(X_{1}+1\right)=\frac{1}{2} \ln 0.98<0 n1lnYn=n1∑i=1nln(Xi+1)* a.s. Eln(X1+1)=21ln0.98<0, so ln Y n * a.s. − ∞ , Y n * a.s. 0 \ln Y_{n} \stackrel{\text { a.s. }}{\longrightarrow}-\infty, Y_{n} \stackrel{\text { a.s. }}{\longrightarrow} 0 lnYn* a.s. −∞,Yn* a.s. 0, therefore Y n Y_{n} Yn The limit of is the single point distribution , With probability 1 take 0 . and E Y n = ∏ i = 1 n E ( X i + 1 ) = ∏ i = 1 n ( 0.7 + 1.4 2 ) = 1.0 5 n → + ∞ . E Y_{n}=\prod_{i=1}^{n} E\left(X_{i}+1\right)=\prod_{i=1}^{n}\left(\frac{0.7+1.4}{2}\right)=1.05^{n} \rightarrow+\infty. EYn=i=1∏nE(Xi+1)=i=1∏n(20.7+1.4)=1.05n→+∞.
7、 ... and 、(20 branch ) There is a pile of balls : 2 red , 3 black , 4 white . Touch a ball randomly , If it's black, remember that you win , If it's other colors , Some people put it back and continue to touch the ball , Until the color or black appears repeatedly , If there is the color you touch for the first time , Then you win , Otherwise you lose . Please ask the probability of winning .
Solution:
set up A k A_k Ak For the first time k k k The probability of winning the first time , The result to be found is P ( A ) = P ( ⋃ k = 1 ∞ A k ) = ∑ k = 1 ∞ P ( A k ) P(A)=P(\bigcup_{k=1}^{\infty}A_k)=\sum_{k=1}^{\infty}P(A_k) P(A)=P(⋃k=1∞Ak)=∑k=1∞P(Ak).
(i) The probability of winning for the first time P ( A 1 ) = 1 3 P(A_1)=\frac{1}{3} P(A1)=31.
(ii) The first k k k Second win ( k > 1 k>1 k>1) indicate : I didn't touch the black ball for the first time , Follow up 2 , 3 , . . . , k − 1 2,3,...,k-1 2,3,...,k−1 I didn't touch black for the first time, and I didn't touch the color you touched for the first time , Last k k k I touched the original color for the first time , This probability must be related to the color you first touch , Consider the full probability formula P ( A k ) = P ( R ) P ( A k ∣ R ) + P ( W ) P ( A k ∣ W ) P(A_k)=P(R)P(A_k|R)+P(W)P(A_k|W) P(Ak)=P(R)P(Ak∣R)+P(W)P(Ak∣W), among R R R It means touching red , W W W It means feeling white , Yes
P ( A k ∣ R ) = ( 4 9 ) k − 2 2 9 , P ( A k ∣ W ) = ( 2 9 ) k − 2 4 9 . P\left( A_k|R \right) =\left( \frac{4}{9} \right) ^{k-2}\frac{2}{9},\quad P\left( A_k\mid W \right) =\left( \frac{2}{9} \right) ^{k-2}\frac{4}{9}. P(Ak∣R)=(94)k−292,P(Ak∣W)=(92)k−294. therefore P ( A k ) = P ( R ) 2 9 ( 4 9 ) k − 2 + P ( W ) 4 9 ( 2 9 ) k − 2 = 4 81 ( 4 9 ) k − 2 + 16 81 ( 2 9 ) k − 2 . P\left( A_k \right) =P\left( R \right) \frac{2}{9}\left( \frac{4}{9} \right) ^{k-2}+P\left( W \right) \frac{4}{9}\left( \frac{2}{9} \right) ^{k-2}=\frac{4}{81}\left( \frac{4}{9} \right) ^{k-2}+\frac{16}{81}\left( \frac{2}{9} \right) ^{k-2}. P(Ak)=P(R)92(94)k−2+P(W)94(92)k−2=814(94)k−2+8116(92)k−2. In sum , Yes
P ( A ) = P ( A 1 ) + 4 81 ( 1 − 4 9 ) + 16 81 ( 1 − 2 9 ) = 1 3 + 4 45 + 16 63 = 71 105 . P\left( A \right) =P\left( A_1 \right) +\frac{4}{81\left( 1-\frac{4}{9} \right)}+\frac{16}{81\left( 1-\frac{2}{9} \right)}=\frac{1}{3}+\frac{4}{45}+\frac{16}{63}=\frac{71}{105}. P(A)=P(A1)+81(1−94)4+81(1−92)16=31+454+6316=10571.
8、 ... and 、(20 branch )
(1)(10 branch ) Explain consistency estimates ;
(2)(10 branch ) X 1 , … , X n X_{1}, \ldots, X_{n} X1,…,Xn It is a sample from the same population , Write a consistent estimate of the median , And explain why .
Solution:
(1) g ^ \hat{g} g^ yes g g g The consistent estimate of means g ^ → p g \hat{g} \stackrel{p}{\rightarrow} g g^→pg, This illustrates the g ^ \hat{g} g^ Is a good estimate , At least in the sample size n n n large , It deviates g g g The probability is very small . Further more , if g ^ \hat{g} g^ yes g g g The strong consistency estimate of means g ^ * a.s. g \hat{g} \stackrel{\text { a.s. }}{\longrightarrow} g g^* a.s. g.(2) Sample median X [ n 2 ] X_{\left[\frac{n}{2}\right]} X[2n] Is the overall median x 0.5 x_{0.5} x0.5 The consistent estimator of , Let the overall density function be f ( x ) f(x) f(x), Asymptotically normal distribution with sample median X [ n 2 ] ∼ N ( x 0.5 , 1 4 n f 2 ( x 0.5 ) ) , X_{\left[\frac{n}{2}\right]} \sim N\left(x_{0.5}, \frac{1}{4 n f^{2}\left(x_{0.5}\right)}\right), X[2n]∼N(x0.5,4nf2(x0.5)1), From its asymptotic normal distribution, we can get P ( ∣ X [ n 2 ] − x 0.5 ∣ < ε ) = P ( 2 n f ( x 0.5 ) ∣ X [ n 2 ] − x 0.5 ∣ < 2 n f ( x 0.5 ) ε ) ∼ Φ ( 2 n f ( x 0.5 ) ε ) − Φ ( − 2 n f ( x 0.5 ) ε ) → 1. P\left( \left| X_{\left[ \frac{n}{2} \right]}-x_{0.5} \right|<\varepsilon \right) =P\left( 2\sqrt{n}f\left( x_{0.5} \right) \left| X_{\left[ \frac{n}{2} \right]}-x_{0.5} \right|<2\sqrt{n}f\left( x_{0.5} \right) \varepsilon \right) \sim \Phi \left( 2\sqrt{n}f\left( x_{0.5} \right) \varepsilon \right) -\Phi \left( -2\sqrt{n}f\left( x_{0.5} \right) \varepsilon \right) \rightarrow 1. P(∣∣∣X[2n]−x0.5∣∣∣<ε)=P(2nf(x0.5)∣∣∣X[2n]−x0.5∣∣∣<2nf(x0.5)ε)∼Φ(2nf(x0.5)ε)−Φ(−2nf(x0.5)ε)→1. The above formula shows the median of the sample X [ n 2 ] X_{\left[\frac{n}{2}\right]} X[2n] Is the overall median x 0.5 x_{0.5} x0.5 The consistent estimator of .
边栏推荐
- Caching mechanism of leveldb
- Redis cache obsolescence strategy
- String class
- Branch and loop statements
- TYUT太原理工大学2022数据库之关系代数小题
- 【九阳神功】2021复旦大学应用统计真题+解析
- Floating point comparison, CMP, tabulation ideas
- Questions and answers of "Fundamentals of RF circuits" in the first semester of the 22nd academic year of Xi'an University of Electronic Science and technology
- Implement queue with stack
- 【九阳神功】2019复旦大学应用统计真题+解析
猜你喜欢
8. C language - bit operator and displacement operator
Mortal immortal cultivation pointer-2
20220211-CTF-MISC-006-pure_ Color (use of stegsolve tool) -007 Aesop_ Secret (AES decryption)
Questions and answers of "Fundamentals of RF circuits" in the first semester of the 22nd academic year of Xi'an University of Electronic Science and technology
TYUT太原理工大学2022数据库大题之E-R图转关系模式
4.二分查找
fianl、finally、finalize三者的区别
C语言入门指南
9. Pointer (upper)
6.函数的递归
随机推荐
【九阳神功】2016复旦大学应用统计真题+解析
5. Download and use of MSDN
View UI plus released version 1.3.1 to enhance the experience of typescript
ROS machine voice
System design learning (I) design pastebin com (or Bit.ly)
String abc = new String(“abc“),到底创建了几个对象
167. Sum of two numbers II - input ordered array - Double pointers
TYUT太原理工大学2022软工导论大题汇总
View UI plus released version 1.2.0 and added image, skeleton and typography components
View UI Plus 发布 1.1.0 版本,支持 SSR、支持 Nuxt、增加 TS 声明文件
There is always one of the eight computer operations that you can't learn programming
Network layer 7 protocol
学编程的八大电脑操作,总有一款你不会
Set container
Voir ui plus version 1.3.1 pour améliorer l'expérience Typescript
Inheritance and polymorphism (I)
Application architecture of large live broadcast platform
【话题终结者】
魏牌:产品叫好声一片,但为何销量还是受挫
E-R graph to relational model of the 2022 database of tyut Taiyuan University of Technology