当前位置:网站首页>[the Nine Yang Manual] 2018 Fudan University Applied Statistics real problem + analysis
[the Nine Yang Manual] 2018 Fudan University Applied Statistics real problem + analysis
2022-07-06 13:30:00 【Elder martial brother statistics】
Catalog
The real part
One 、(20 branch ) from 1-10 Don't put it back 3 A digital , Find the following probability
(1)(5 branch ) The minimum number is 5;
(2)(5 branch ) The biggest number is 5;
(3)(5 branch ) At least one is less than 6;
(4)(5 branch ) One less than 5, One is equal to 5, One is greater than 5.
Two 、(15 branch ) You are trying again. The probability of success is p p p Events , Don't stop until there are two consecutive successes or two failures , Please take the probability of two successful stops .
3、 ... and 、(15 branch ) Find binomial distribution , ( a , b ) (a,b) (a,b) Evenly distributed , Expectation and variance of gamma distribution .
Four 、(20 branch ) prove E ( X 2 ) < ∞ E\left(X^{2}\right)<\infty E(X2)<∞ The necessary and sufficient condition of is the series ∑ n P ( ∣ X ∣ > n ) \sum n P(|X|>n) ∑nP(∣X∣>n) convergence .
5、 ... and 、(20 branch ) X 1 , X 2 , X 3 X_{1}, X_{2}, X_{3} X1,X2,X3 Is taken from the expectation that α \alpha α Random samples of exponential distribution , Find the probability P ( X 1 < X 2 < X 3 ) P\left(X_{1}<X_{2}<X_{3}\right) P(X1<X2<X3) as well as X ( 1 ) X_{(1)} X(1) Probability density of .
6、 ... and 、(20 branch ) P ( X i = − 0.3 ) = P ( X i = 0.4 ) = 1 2 , i = 1 , 2 , … , n , P\left(X_{i}=-0.3\right)=P\left(X_{i}=0.4\right)=\frac{1}{2}, i=1,2, \ldots, n, P(Xi=−0.3)=P(Xi=0.4)=21,i=1,2,…,n, Are independent of each other , Construct a sequence of random variables Y n = ∏ i = 1 n ( X i + 1 ) , Y_{n}=\prod_{i=1}^{n}\left(X_{i}+1\right), Yn=∏i=1n(Xi+1), seek Y n Y_{n} Yn And prove Y n Y_{n} Yn Expectations tend to be infinite .
7、 ... and 、(20 branch ) There is a pile of balls : 2 red , 3 black , 4 white . Touch a ball randomly , If it's black, remember that you win , If it's other colors , Some people put it back and continue to touch the ball , Until the color or black appears repeatedly , If there is the color you touch for the first time , Then you win , Otherwise you lose . Please ask the probability of winning .
8、 ... and 、(20 branch )
(1)(10 branch ) Explain consistency estimates ;
(2)(10 branch ) X 1 , … , X n X_{1}, \ldots, X_{n} X1,…,Xn It is a sample from the same population , Write a consistent estimate of the median , And explain why .
The analysis part
One 、(20 branch ) from 1-10 Don't put it back 3 A digital , Find the following probability
(1)(5 branch ) The minimum number is 5;
(2)(5 branch ) The biggest number is 5;
(3)(5 branch ) At least one is less than 6;
(4)(5 branch ) One less than 5, One is equal to 5, One is greater than 5.
Solution:
(1) # Ω = C 10 3 = 120 \# \Omega=C_{10}^{3}=120 #Ω=C103=120, #A A 1 = 1 ⋅ C 5 2 = 10 , P ( A 1 ) = # A 1 # Ω = 1 12 A_{1}=1 \cdot C_{5}^{2}=10, P\left(A_{1}\right)=\frac{\# A_{1}}{\# \Omega}=\frac{1}{12} A1=1⋅C52=10,P(A1)=#Ω#A1=121.
(2) # A 2 = 1 ⋅ C 4 2 = 6 , P ( A 2 ) = # A 2 # Ω = 1 20 \# A_{2}=1 \cdot C_{4}^{2}=6, P\left(A_{2}\right)=\frac{\# A_{2}}{\# \Omega}=\frac{1}{20} #A2=1⋅C42=6,P(A2)=#Ω#A2=201.
(3) # A 3 ‾ = C 5 3 = 10 , P ( A 3 ) = 1 − # A 3 ‾ # Ω = 11 12 \# \overline{A_{3}}=C_{5}^{3}=10, P\left(A_{3}\right)=1-\frac{\# \overline{A_{3}}}{\# \Omega}=\frac{11}{12} #A3=C53=10,P(A3)=1−#Ω#A3=1211.
(4) # A 4 = 4 ⋅ 1 ⋅ 5 = 20 , P ( A 4 ) = # A 4 # Ω = 1 6 \# A_{4}=4 \cdot 1 \cdot 5=20, P\left(A_{4}\right)=\frac{\# A_{4}}{\# \Omega}=\frac{1}{6} #A4=4⋅1⋅5=20,P(A4)=#Ω#A4=61.
Two 、(15 branch ) You are trying again. The probability of success is p p p Events , Don't stop until there are two consecutive successes or two failures , Please With the probability of two successful stops .
Solution:
set up A A A “ Stop successfully twice ”", p 0 = P ( A ) , p 1 = P ( A ∣ p_{0}=P(A), p_{1}=P(A \mid p0=P(A),p1=P(A∣ For the first time ) , p − 1 = P ), p_{-1}=P ),p−1=P ( A ∣ A \mid A∣ The first failure ) ) ), According to the full probability formula : { p 0 = p 1 ⋅ p + p − 1 ⋅ ( 1 − p ) p 1 = p + p − 1 ⋅ ( 1 − p ) p − 1 = p 1 ⋅ p \left\{\begin{array}{l} p_{0}=p_{1} \cdot p+p_{-1} \cdot(1-p) \\ p_{1}=p+p_{-1} \cdot(1-p) \\ p_{-1}=p_{1} \cdot p \end{array}\right. ⎩⎨⎧p0=p1⋅p+p−1⋅(1−p)p1=p+p−1⋅(1−p)p−1=p1⋅p Solution p 0 = p 2 ( 2 − p ) 1 − p ( 1 − p ) p_{0}=\frac{p^{2}(2-p)}{1-p(1-p)} p0=1−p(1−p)p2(2−p).
3、 ... and 、(15 branch ) Find binomial distribution , ( a , b ) (a,b) (a,b) Evenly distributed , Expectation and variance of gamma distribution .
Solution:
(1) The binomial distribution : X ∼ B ( n , p ) , P ( X = k ) = C n k p k ( 1 − p ) n − k , k = 0 , 1 , … , n X \sim B(n, p), P(X=k)=C_{n}^{k} p^{k}(1-p)^{n-k}, k=0,1, \ldots, n X∼B(n,p),P(X=k)=Cnkpk(1−p)n−k,k=0,1,…,n,
E X = ∑ k = 0 n k n ! k ! ( n − k ) ! p k ( 1 − p ) n − k = n p ∑ k = 1 n ( n − 1 ) ! ( k − 1 ) ! ( n − k ) ! p k − 1 ( 1 − p ) n − k = n p , E X=\sum_{k=0}^{n} k \frac{n !}{k !(n-k) !} p^{k}(1-p)^{n-k}=n p \sum_{k=1}^{n} \frac{(n-1) !}{(k-1) !(n-k) !} p^{k-1}(1-p)^{n-k}=n p, EX=k=0∑nkk!(n−k)!n!pk(1−p)n−k=npk=1∑n(k−1)!(n−k)!(n−1)!pk−1(1−p)n−k=np,
E X ( X − 1 ) = ∑ k = 0 n k ( k − 1 ) C n k p k ( 1 − p ) n − k = n ( n − 1 ) p 2 ∑ k = 2 n C n − 2 k − 2 p k − 2 ( 1 − p ) n − k = n ( n − 1 ) p 2 , E X(X-1)=\sum_{k=0}^{n} k(k-1) C_{n}^{k} p^{k}(1-p)^{n-k}=n(n-1) p^{2} \sum_{k=2}^{n} C_{n-2}^{k-2} p^{k-2}(1-p)^{n-k}=n(n-1) p^{2}, EX(X−1)=k=0∑nk(k−1)Cnkpk(1−p)n−k=n(n−1)p2k=2∑nCn−2k−2pk−2(1−p)n−k=n(n−1)p2,
therefore E X 2 = n ( n − 1 ) p 2 + n p , D X = E X 2 − ( E X ) 2 = n ( n − 1 ) p 2 + n p − n 2 p 2 = n p ( 1 − p ) E X^{2}=n(n-1) p^{2}+n p, D X=E X^{2}-(E X)^{2}=n(n-1) p^{2}+n p-n^{2} p^{2}=n p(1-p) EX2=n(n−1)p2+np,DX=EX2−(EX)2=n(n−1)p2+np−n2p2=np(1−p).(2) Uniform distribution : X ∼ U ( a , b ) , f ( x ) = 1 b − a , a < x < b X \sim U(a, b), f(x)=\frac{1}{b-a}, a<x<b X∼U(a,b),f(x)=b−a1,a<x<b,
E X = ∫ a b x b − a d x = a + b 2 , D X = ∫ a b ( x − a + b 2 ) 2 1 b − a d x = ( b − a ) 2 12 . E X=\int_{a}^{b} \frac{x}{b-a} d x=\frac{a+b}{2}, D X=\int_{a}^{b}\left(x-\frac{a+b}{2}\right)^{2} \frac{1}{b-a} d x=\frac{(b-a)^{2}}{12} . EX=∫abb−axdx=2a+b,DX=∫ab(x−2a+b)2b−a1dx=12(b−a)2.
(3) Gamma distribution : X ∼ G a ( α , λ ) , f ( x ) = λ α Γ ( α ) x α − 1 e − λ x , x > 0 X \sim G a(\alpha, \lambda), f(x)=\frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\lambda x}, x>0 X∼Ga(α,λ),f(x)=Γ(α)λαxα−1e−λx,x>0,
E X = ∫ 0 + ∞ λ α Γ ( α ) x α e − λ x d x = 1 λ Γ ( α ) ∫ 0 + ∞ ( λ x ) α e − λ x d ( λ x ) = Γ ( α + 1 ) λ Γ ( α ) = α λ , E X=\int_{0}^{+\infty} \frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha} e^{-\lambda x} d x=\frac{1}{\lambda \Gamma(\alpha)} \int_{0}^{+\infty}(\lambda x)^{\alpha} e^{-\lambda x} d(\lambda x)=\frac{\Gamma(\alpha+1)}{\lambda \Gamma(\alpha)}=\frac{\alpha}{\lambda}, EX=∫0+∞Γ(α)λαxαe−λxdx=λΓ(α)1∫0+∞(λx)αe−λxd(λx)=λΓ(α)Γ(α+1)=λα,
E X 2 = ∫ 0 + ∞ λ α Γ ( α ) x α + 1 e − λ x d x = 1 λ 2 Γ ( α ) ∫ 0 + ∞ ( λ x ) α + 1 e − λ x d ( λ x ) = Γ ( α + 2 ) λ 2 Γ ( α ) = α ( α + 1 ) λ E X^{2}=\int_{0}^{+\infty} \frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha+1} e^{-\lambda x} d x=\frac{1}{\lambda^{2} \Gamma(\alpha)} \int_{0}^{+\infty}(\lambda x)^{\alpha+1} e^{-\lambda x} d(\lambda x)=\frac{\Gamma(\alpha+2)}{\lambda^{2} \Gamma(\alpha)}=\frac{\alpha(\alpha+1)}{\lambda} EX2=∫0+∞Γ(α)λαxα+1e−λxdx=λ2Γ(α)1∫0+∞(λx)α+1e−λxd(λx)=λ2Γ(α)Γ(α+2)=λα(α+1),
so D X = E X 2 − ( E X ) 2 = α ( α + 1 ) λ 2 − α 2 λ 2 = α λ 2 . D X=E X^{2}-(E X)^{2}=\frac{\alpha(\alpha+1)}{\lambda^{2}}-\frac{\alpha^{2}}{\lambda^{2}}=\frac{\alpha}{\lambda^{2}} . DX=EX2−(EX)2=λ2α(α+1)−λ2α2=λ2α.
Four 、(20 branch ) prove E ( X 2 ) < ∞ E\left(X^{2}\right)<\infty E(X2)<∞ The necessary and sufficient condition of is the series ∑ n P ( ∣ X ∣ > n ) \sum n P(|X|>n) ∑nP(∣X∣>n) convergence .
Solution:
(1) First explain E ∣ X ∣ < + ∞ E|X|<+\infty E∣X∣<+∞ The necessary and sufficient condition of is the series ∑ n = 1 ∞ P ( ∣ X ∣ > n ) \sum_{n=1}^{\infty} P(|X|>n) ∑n=1∞P(∣X∣>n) convergence : because ∑ n = 1 ∞ P ( ∣ X ∣ > n ) = ∑ n = 1 ∞ ∑ k = n ∞ P ( k < ∣ X ∣ ≤ k + 1 ) = ∑ k = 1 ∞ ∑ n = 1 k P ( k < ∣ X ∣ ≤ k + 1 ) = ∑ k = 1 ∞ k P ( k < ∣ X ∣ ≤ k + 1 ) \begin{aligned} \sum_{n=1}^{\infty} P(|X|>n) &=\sum_{n=1}^{\infty} \sum_{k=n}^{\infty} P(k<|X| \leq k+1) \\ &=\sum_{k=1}^{\infty} \sum_{n=1}^{k} P(k<|X| \leq k+1) \\ &=\sum_{k=1}^{\infty} k P(k<|X| \leq k+1) \end{aligned} n=1∑∞P(∣X∣>n)=n=1∑∞k=n∑∞P(k<∣X∣≤k+1)=k=1∑∞n=1∑kP(k<∣X∣≤k+1)=k=1∑∞kP(k<∣X∣≤k+1) At the same time, by the comparison and discrimination of positive series , Superior number and ∑ k = 1 ∞ ( k + 1 ) P ( k < ∣ X ∣ ≤ k + 1 ) \sum_{k=1}^{\infty}(k+1) P(k<|X| \leq k+1) ∑k=1∞(k+1)P(k<∣X∣≤k+1) It is also convergent and scattered , in consideration of E ∣ X ∣ = ∫ 0 + ∞ x d F ∣ X ∣ ( x ) E|X|=\int_{0}^{+\infty} x d F_{|X|}(x) E∣X∣=∫0+∞xdF∣X∣(x), On the one hand ∫ 0 + ∞ x d F ∣ X ∣ ( x ) = ∑ k = 0 ∞ ∫ k k + 1 x d F ∣ X ∣ ( x ) ≤ ∑ k = 0 ∞ ∫ k k + 1 ( k + 1 ) d F ∣ X ∣ ( x ) = ∑ k = 0 ∞ ( k + 1 ) P ( k < ∣ X ∣ ≤ k + 1 ) , \begin{aligned} \int_{0}^{+\infty} x d F_{|X|}(x) &=\sum_{k=0}^{\infty} \int_{k}^{k+1} x d F_{|X|}(x) \\ & \leq \sum_{k=0}^{\infty} \int_{k}^{k+1}(k+1) d F_{|X|}(x) \\ &=\sum_{k=0}^{\infty}(k+1) P(k<|X| \leq k+1), \end{aligned} ∫0+∞xdF∣X∣(x)=k=0∑∞∫kk+1xdF∣X∣(x)≤k=0∑∞∫kk+1(k+1)dF∣X∣(x)=k=0∑∞(k+1)P(k<∣X∣≤k+1), On the other hand, there are
∫ 0 + ∞ x d F ∣ X ∣ ( x ) = ∑ k = 0 ∞ ∫ k k + 1 x d F ∣ X ∣ ( x ) ≥ ∑ k = 0 ∞ ∫ k k + 1 k d F ∣ X ∣ ( x ) = ∑ k = 0 ∞ k P ( k < ∣ X ∣ ≤ k + 1 ) , \begin{aligned} \int_{0}^{+\infty} x d F_{|X|}(x) &=\sum_{k=0}^{\infty} \int_{k}^{k+1} x d F_{|X|}(x) \\ & \geq \sum_{k=0}^{\infty} \int_{k}^{k+1} k d F_{|X|}(x) \\ &=\sum_{k=0}^{\infty} k P(k<|X| \leq k+1), \end{aligned} ∫0+∞xdF∣X∣(x)=k=0∑∞∫kk+1xdF∣X∣(x)≥k=0∑∞∫kk+1kdF∣X∣(x)=k=0∑∞kP(k<∣X∣≤k+1), in summary , E ∣ X ∣ < + ∞ E|X|<+\infty E∣X∣<+∞ The necessary and sufficient condition of is the series ∑ n = 1 ∞ P ( ∣ X ∣ > n ) \sum_{n=1}^{\infty} P(|X|>n) ∑n=1∞P(∣X∣>n) convergence .(2) Further explanation E X 2 < + ∞ E X^{2}<+\infty EX2<+∞ The necessary and sufficient condition of is the series ∑ n = 1 + ∞ n P ( ∣ X ∣ > n ) \sum_{n=1}^{+\infty} n P(|X|>n) ∑n=1+∞nP(∣X∣>n) convergence : because ∑ n = 1 ∞ n P ( ∣ X ∣ > n ) = ∑ n = 1 ∞ ∑ k = n ∞ n P ( k < ∣ X ∣ ≤ k + 1 ) = ∑ k = 1 ∞ ∑ n = 1 ∞ n P ( k < ∣ X ∣ ≤ k + 1 ) = ∑ k = 1 ∞ k ( k + 1 ) 2 P ( k < ∣ X ∣ ≤ k + 1 ) \begin{aligned} \sum_{n=1}^{\infty} n P(|X|>n) &=\sum_{n=1}^{\infty} \sum_{k=n}^{\infty} n P(k<|X| \leq k+1) \\ &=\sum_{k=1}^{\infty} \sum_{n=1}^{\infty} n P(k<|X| \leq k+1) \\ &=\sum_{k=1}^{\infty} \frac{k(k+1)}{2} P(k<|X| \leq k+1) \end{aligned} n=1∑∞nP(∣X∣>n)=n=1∑∞k=n∑∞nP(k<∣X∣≤k+1)=k=1∑∞n=1∑∞nP(k<∣X∣≤k+1)=k=1∑∞2k(k+1)P(k<∣X∣≤k+1) At the same time, by the comparison and discrimination of positive series , The convergence and divergence of the above formula is obviously equivalent to ∑ n = 1 ∞ n 2 P ( n < ∣ X ∣ ≤ n + 1 ) \sum_{n=1}^{\infty} n^{2} P(n<|X| \leq n+1) ∑n=1∞n2P(n<∣X∣≤n+1) Convergence and divergence of , It's also equivalent to ∑ n = 1 ∞ ( n + 1 ) 2 P ( n < ∣ X ∣ ≤ n + 1 ) \sum_{n=1}^{\infty}(n+1)^{2} P(n<|X| \leq n+1) ∑n=1∞(n+1)2P(n<∣X∣≤n+1) Convergence and divergence of , Also with the help of second-order moment determination Semantic formula E X 2 = ∫ 0 + ∞ x 2 d F ∣ X ∣ ( x ) E X^{2}=\int_{0}^{+\infty} x^{2} d F_{|X|}(x) EX2=∫0+∞x2dF∣X∣(x), On the one hand ∫ 0 + ∞ x 2 d F ∣ X ∣ ( x ) = ∑ n = 0 ∞ ∫ n n + 1 x 2 d F ∣ X ∣ ( x ) ≤ ∑ n = 0 ∞ ∫ n n + 1 ( n + 1 ) 2 d F ∣ X ∣ ( x ) = ∑ n = 0 ∞ ( n + 1 ) 2 P ( n < ∣ X ∣ ≤ n + 1 ) \begin{aligned} \int_{0}^{+\infty} x^{2} d F_{|X|}(x) &=\sum_{n=0}^{\infty} \int_{n}^{n+1} x^{2} d F_{|X|}(x) \\ & \leq \sum_{n=0}^{\infty} \int_{n}^{n+1}(n+1)^{2} d F_{|X|}(x) \\ &=\sum_{n=0}^{\infty}(n+1)^{2} P(n<|X| \leq n+1) \end{aligned} ∫0+∞x2dF∣X∣(x)=n=0∑∞∫nn+1x2dF∣X∣(x)≤n=0∑∞∫nn+1(n+1)2dF∣X∣(x)=n=0∑∞(n+1)2P(n<∣X∣≤n+1)
On the other hand, there are ∫ 0 + ∞ x 2 d F ∣ X ∣ ( x ) = ∑ n = 0 ∞ ∫ n n + 1 x 2 d F ∣ X ∣ ( x ) ≤ ∑ n = 0 ∞ ∫ n n + 1 n 2 d F ∣ X ∣ ( x ) = ∑ n = 0 ∞ n 2 P ( n < ∣ X ∣ ≤ n + 1 ) , \begin{aligned} \int_{0}^{+\infty} x^{2} d F_{|X|}(x) &=\sum_{n=0}^{\infty} \int_{n}^{n+1} x^{2} d F_{|X|}(x) \\ & \leq \sum_{n=0}^{\infty} \int_{n}^{n+1} n^{2} d F_{|X|}(x) \\ &=\sum_{n=0}^{\infty} n^{2} P(n<|X| \leq n+1), \end{aligned} ∫0+∞x2dF∣X∣(x)=n=0∑∞∫nn+1x2dF∣X∣(x)≤n=0∑∞∫nn+1n2dF∣X∣(x)=n=0∑∞n2P(n<∣X∣≤n+1), in summary , E X 2 < + ∞ E X^{2}<+\infty EX2<+∞ The necessary and sufficient condition of is the series ∑ n = 1 + ∞ n P ( ∣ X ∣ > n ) \sum_{n=1}^{+\infty} n P(|X|>n) ∑n=1+∞nP(∣X∣>n) convergence .
5、 ... and 、(20 branch ) X 1 , X 2 , X 3 X_{1}, X_{2}, X_{3} X1,X2,X3 Is taken from the expectation that α \alpha α Random samples of exponential distribution , Find the probability P ( X 1 < X 2 < X 3 ) P\left(X_{1}<X_{2}<X_{3}\right) P(X1<X2<X3) as well as X ( 1 ) X_{(1)} X(1) Probability density of .
Solution:
According to the rotation symmetry , P ( X 1 < X 2 < X 3 ) = 1 6 P\left(X_{1}<X_{2}<X_{3}\right)=\frac{1}{6} P(X1<X2<X3)=61. Make Y = X ( 1 ) Y=X_{(1)} Y=X(1), Then when y > 0 y>0 y>0 when , 1 − F ( y ) = P { Y > y } = P 3 { X 1 > y } = e − 3 α y 1-F(y)=P\{Y>y\}=P^{3}\left\{X_{1}>y\right\}=e^{-\frac{3}{\alpha} y} 1−F(y)=P{ Y>y}=P3{ X1>y}=e−α3y, so f ( y ) = 3 α e − 3 α y , y > 0 f(y)=\frac{3}{\alpha} e^{-\frac{3}{\alpha} y}, y>0 f(y)=α3e−α3y,y>0. This happens to be Exp ( 3 α ) \operatorname{Exp}\left(\frac{3}{\alpha}\right) Exp(α3).
6、 ... and 、(20 branch ) P ( X i = − 0.3 ) = P ( X i = 0.4 ) = 1 2 , i = 1 , 2 , … , n , P\left(X_{i}=-0.3\right)=P\left(X_{i}=0.4\right)=\frac{1}{2}, i=1,2, \ldots, n, P(Xi=−0.3)=P(Xi=0.4)=21,i=1,2,…,n, Are independent of each other , Construct a sequence of random variables Y n = ∏ i = 1 n ( X i + 1 ) , Y_{n}=\prod_{i=1}^{n}\left(X_{i}+1\right), Yn=∏i=1n(Xi+1), seek Y n Y_{n} Yn And prove Y n Y_{n} Yn Expectations tend to be infinite .
Solution:
By strong law of numbers , 1 n ln Y n = 1 n ∑ i = 1 n ln ( X i + 1 ) * a.s. E ln ( X 1 + 1 ) = 1 2 ln 0.98 < 0 \frac{1}{n} \ln Y_{n}=\frac{1}{n} \sum_{i=1}^{n} \ln \left(X_{i}+1\right) \stackrel{\text { a.s. }}{\longrightarrow} E \ln \left(X_{1}+1\right)=\frac{1}{2} \ln 0.98<0 n1lnYn=n1∑i=1nln(Xi+1)* a.s. Eln(X1+1)=21ln0.98<0, so ln Y n * a.s. − ∞ , Y n * a.s. 0 \ln Y_{n} \stackrel{\text { a.s. }}{\longrightarrow}-\infty, Y_{n} \stackrel{\text { a.s. }}{\longrightarrow} 0 lnYn* a.s. −∞,Yn* a.s. 0, therefore Y n Y_{n} Yn The limit of is the single point distribution , With probability 1 take 0 . and E Y n = ∏ i = 1 n E ( X i + 1 ) = ∏ i = 1 n ( 0.7 + 1.4 2 ) = 1.0 5 n → + ∞ . E Y_{n}=\prod_{i=1}^{n} E\left(X_{i}+1\right)=\prod_{i=1}^{n}\left(\frac{0.7+1.4}{2}\right)=1.05^{n} \rightarrow+\infty. EYn=i=1∏nE(Xi+1)=i=1∏n(20.7+1.4)=1.05n→+∞.
7、 ... and 、(20 branch ) There is a pile of balls : 2 red , 3 black , 4 white . Touch a ball randomly , If it's black, remember that you win , If it's other colors , Some people put it back and continue to touch the ball , Until the color or black appears repeatedly , If there is the color you touch for the first time , Then you win , Otherwise you lose . Please ask the probability of winning .
Solution:
set up A k A_k Ak For the first time k k k The probability of winning the first time , The result to be found is P ( A ) = P ( ⋃ k = 1 ∞ A k ) = ∑ k = 1 ∞ P ( A k ) P(A)=P(\bigcup_{k=1}^{\infty}A_k)=\sum_{k=1}^{\infty}P(A_k) P(A)=P(⋃k=1∞Ak)=∑k=1∞P(Ak).
(i) The probability of winning for the first time P ( A 1 ) = 1 3 P(A_1)=\frac{1}{3} P(A1)=31.
(ii) The first k k k Second win ( k > 1 k>1 k>1) indicate : I didn't touch the black ball for the first time , Follow up 2 , 3 , . . . , k − 1 2,3,...,k-1 2,3,...,k−1 I didn't touch black for the first time, and I didn't touch the color you touched for the first time , Last k k k I touched the original color for the first time , This probability must be related to the color you first touch , Consider the full probability formula P ( A k ) = P ( R ) P ( A k ∣ R ) + P ( W ) P ( A k ∣ W ) P(A_k)=P(R)P(A_k|R)+P(W)P(A_k|W) P(Ak)=P(R)P(Ak∣R)+P(W)P(Ak∣W), among R R R It means touching red , W W W It means feeling white , Yes
P ( A k ∣ R ) = ( 4 9 ) k − 2 2 9 , P ( A k ∣ W ) = ( 2 9 ) k − 2 4 9 . P\left( A_k|R \right) =\left( \frac{4}{9} \right) ^{k-2}\frac{2}{9},\quad P\left( A_k\mid W \right) =\left( \frac{2}{9} \right) ^{k-2}\frac{4}{9}. P(Ak∣R)=(94)k−292,P(Ak∣W)=(92)k−294. therefore P ( A k ) = P ( R ) 2 9 ( 4 9 ) k − 2 + P ( W ) 4 9 ( 2 9 ) k − 2 = 4 81 ( 4 9 ) k − 2 + 16 81 ( 2 9 ) k − 2 . P\left( A_k \right) =P\left( R \right) \frac{2}{9}\left( \frac{4}{9} \right) ^{k-2}+P\left( W \right) \frac{4}{9}\left( \frac{2}{9} \right) ^{k-2}=\frac{4}{81}\left( \frac{4}{9} \right) ^{k-2}+\frac{16}{81}\left( \frac{2}{9} \right) ^{k-2}. P(Ak)=P(R)92(94)k−2+P(W)94(92)k−2=814(94)k−2+8116(92)k−2. In sum , Yes
P ( A ) = P ( A 1 ) + 4 81 ( 1 − 4 9 ) + 16 81 ( 1 − 2 9 ) = 1 3 + 4 45 + 16 63 = 71 105 . P\left( A \right) =P\left( A_1 \right) +\frac{4}{81\left( 1-\frac{4}{9} \right)}+\frac{16}{81\left( 1-\frac{2}{9} \right)}=\frac{1}{3}+\frac{4}{45}+\frac{16}{63}=\frac{71}{105}. P(A)=P(A1)+81(1−94)4+81(1−92)16=31+454+6316=10571.
8、 ... and 、(20 branch )
(1)(10 branch ) Explain consistency estimates ;
(2)(10 branch ) X 1 , … , X n X_{1}, \ldots, X_{n} X1,…,Xn It is a sample from the same population , Write a consistent estimate of the median , And explain why .
Solution:
(1) g ^ \hat{g} g^ yes g g g The consistent estimate of means g ^ → p g \hat{g} \stackrel{p}{\rightarrow} g g^→pg, This illustrates the g ^ \hat{g} g^ Is a good estimate , At least in the sample size n n n large , It deviates g g g The probability is very small . Further more , if g ^ \hat{g} g^ yes g g g The strong consistency estimate of means g ^ * a.s. g \hat{g} \stackrel{\text { a.s. }}{\longrightarrow} g g^* a.s. g.(2) Sample median X [ n 2 ] X_{\left[\frac{n}{2}\right]} X[2n] Is the overall median x 0.5 x_{0.5} x0.5 The consistent estimator of , Let the overall density function be f ( x ) f(x) f(x), Asymptotically normal distribution with sample median X [ n 2 ] ∼ N ( x 0.5 , 1 4 n f 2 ( x 0.5 ) ) , X_{\left[\frac{n}{2}\right]} \sim N\left(x_{0.5}, \frac{1}{4 n f^{2}\left(x_{0.5}\right)}\right), X[2n]∼N(x0.5,4nf2(x0.5)1), From its asymptotic normal distribution, we can get P ( ∣ X [ n 2 ] − x 0.5 ∣ < ε ) = P ( 2 n f ( x 0.5 ) ∣ X [ n 2 ] − x 0.5 ∣ < 2 n f ( x 0.5 ) ε ) ∼ Φ ( 2 n f ( x 0.5 ) ε ) − Φ ( − 2 n f ( x 0.5 ) ε ) → 1. P\left( \left| X_{\left[ \frac{n}{2} \right]}-x_{0.5} \right|<\varepsilon \right) =P\left( 2\sqrt{n}f\left( x_{0.5} \right) \left| X_{\left[ \frac{n}{2} \right]}-x_{0.5} \right|<2\sqrt{n}f\left( x_{0.5} \right) \varepsilon \right) \sim \Phi \left( 2\sqrt{n}f\left( x_{0.5} \right) \varepsilon \right) -\Phi \left( -2\sqrt{n}f\left( x_{0.5} \right) \varepsilon \right) \rightarrow 1. P(∣∣∣X[2n]−x0.5∣∣∣<ε)=P(2nf(x0.5)∣∣∣X[2n]−x0.5∣∣∣<2nf(x0.5)ε)∼Φ(2nf(x0.5)ε)−Φ(−2nf(x0.5)ε)→1. The above formula shows the median of the sample X [ n 2 ] X_{\left[\frac{n}{2}\right]} X[2n] Is the overall median x 0.5 x_{0.5} x0.5 The consistent estimator of .
边栏推荐
- [中国近代史] 第六章测验
- Tyut Taiyuan University of technology 2022 introduction to software engineering examination question outline
- 分支语句和循环语句
- (ultra detailed onenet TCP protocol access) arduino+esp8266-01s access to the Internet of things platform, upload real-time data collection /tcp transparent transmission (and how to obtain and write L
- Introduction pointer notes
- 9.指针(上)
- 5. Function recursion exercise
- MySQL limit x, -1 doesn't work, -1 does not work, and an error is reported
- 更改VS主题及设置背景图片
- Questions and answers of "signal and system" in the first semester of the 22nd academic year of Xi'an University of Electronic Science and technology
猜你喜欢
There is always one of the eight computer operations that you can't learn programming
(ultra detailed onenet TCP protocol access) arduino+esp8266-01s access to the Internet of things platform, upload real-time data collection /tcp transparent transmission (and how to obtain and write L
7.数组、指针和数组的关系
Quickly generate illustrations
(超详细二)onenet数据可视化详解,如何用截取数据流绘图
2. C language matrix multiplication
Cookie和Session的区别
3. Number guessing game
Arduino+ water level sensor +led display + buzzer alarm
5. Download and use of MSDN
随机推荐
(ultra detailed onenet TCP protocol access) arduino+esp8266-01s access to the Internet of things platform, upload real-time data collection /tcp transparent transmission (and how to obtain and write L
7. Relationship between array, pointer and array
IPv6 experiment
MySQL中count(*)的实现方式
8.C语言——位操作符与位移操作符
Tyut Taiyuan University of technology 2022 "Mao Gai" must be recited
JS interview questions (I)
Aurora system model of learning database
13 power map
Tyut Taiyuan University of technology 2022 introduction to software engineering
最新坦克大战2022-全程开发笔记-3
View UI Plus 发布 1.3.1 版本,增强 TypeScript 使用体验
【毕业季·进击的技术er】再见了,我的学生时代
5. Function recursion exercise
Service ability of Hongmeng harmonyos learning notes to realize cross end communication
Small exercise of library management system
ABA问题遇到过吗,详细说以下,如何避免ABA问题
Tyut Taiyuan University of technology 2022 introduction to software engineering summary
The latest tank battle 2022 - full development notes-3
Cloud native trend in 2022