当前位置:网站首页>【九阳神功】2016复旦大学应用统计真题+解析
【九阳神功】2016复旦大学应用统计真题+解析
2022-07-06 09:20:00 【大师兄统计】
真题部分
一、(15分) 三个人独立地同时破译密码, 且三人能破译密码的概率分别为1/5, 1/3和1/4, 求此密码能够被破译的概率.
二、(15分) 从(0,1)中随机地取两个数, 求其积不小于3/16且其和不大于1的概率.
三、(15分) X ∼ N ( 0 , 1 ) , X \sim N(0,1), X∼N(0,1), 求 Y = X 2 Y=X^{2} Y=X2 的密度函数.
四、(30分) 记(0,1),(1,0),(0,0)三点围成的区域为 D , ( X , Y ) D,(X, Y) D,(X,Y)服从 D D D上的均匀分布, 求
(1)(15分) E ( X + Y ) , Var ( X + Y ) E(X+Y), \operatorname{Var}(X+Y) E(X+Y),Var(X+Y);
(2)(15分) X , Y X, Y X,Y 的相关系数.
五、(15分) 对于两个只有两个取值的随机变量 X , Y , X, Y, X,Y, 试证明 X , Y X, Y X,Y独立当且仅当 X , Y X, Y X,Y不相关.
六、(15分) 设有来自总体 X ∼ N ( μ , σ 2 ) X \sim N\left(\mu, \sigma^{2}\right) X∼N(μ,σ2)的 2 n 2 n 2n个随机样本, 试求期望
E ( ∑ i = 1 n ( X i + X n + i − 2 X ˉ ) 2 ) . E\left(\sum_{i=1}^{n}\left(X_{i}+X_{n+i}-2 \bar{X}\right)^{2}\right). E(i=1∑n(Xi+Xn+i−2Xˉ)2).
七、(15分) X 1 , X 2 , X 3 X_{1}, X_{2}, X_{3} X1,X2,X3是i.i.d.的服从 U ( 0 , 1 ) U(0,1) U(0,1)的随机变量, 求次序统计量 X ( 1 ) X_{(1)} X(1)的分布函数与期望.
八、(30分) 有来自 X ∼ f ( x ) = { θ , 0 ≤ x < 1 1 − θ , 1 ≤ x < 2 , 0 , otherwise X \sim f(x)=\left\{\begin{array}{cl}\theta, & 0 \leq x<1 \\ 1-\theta, & 1 \leq x<2, \\ 0, & \text { otherwise }\end{array}\right. X∼f(x)=⎩⎨⎧θ,1−θ,0,0≤x<11≤x<2, otherwise 的 n n n 个简单随机样本, 求
(1)(15分) θ \theta θ 的矩估计;
(2)(15分) θ \theta θ 的最大似然估计, 已知 m = ∑ i = 1 n I [ X i < 1 ] m=\sum_{i=1}^{n} I\left[X_{i}<1\right] m=∑i=1nI[Xi<1].
解析部分
一、(15分) 三个人独立地同时破译密码, 且三人能破译密码的概率分别为1/5, 1/3和1/4, 求此密码能够被破译的概率.
Solution: 根据德摩根公式, P { 至少有一人破译 } = 1 − P { 没有一个人破译 } = 1 − 4 5 × 2 3 × 3 4 = 0.6. \begin{aligned} P\{\text { 至少有一人破译 }\} &=1-P\{\text { 没有一个人破译 }\} \\ &=1-\frac{4}{5} \times \frac{2}{3} \times \frac{3}{4}=0.6 . \end{aligned} P{ 至少有一人破译 }=1−P{ 没有一个人破译 }=1−54×32×43=0.6.
二、(15分) 从(0,1)中随机地取两个数, 求其积不小于3/16且其和不大于1的概率.
Solution: 设取到的两个数是 X , Y ∼ U ( 0 , 1 ) X, Y \sim U(0,1) X,Y∼U(0,1), 其积不小于 3 16 \frac{3}{16} 163 意味着 X Y ≥ 3 16 X Y \geq \frac{3}{16} XY≥163, 其和不大于 1 意味着 X + Y ≤ 1 X+Y \leq 1 X+Y≤1.
令 D = { ( x , y ) : x y ≥ 3 16 , x + y ≤ 1 } ∩ ( 0 , 1 ) 2 D=\left\{(x, y): x y \geq \frac{3}{16}, x+y \leq 1\right\} \cap(0,1)^{2} D={ (x,y):xy≥163,x+y≤1}∩(0,1)2, 该概率为 ∫ D f ( x , y ) d x d y = 1 8 − ∫ 1 4 3 4 ∫ 1 4 3 16 x d y d x = 1 8 − ∫ 1 4 3 4 ( 3 16 x − 1 4 ) d x = 1 4 − 3 ln 3 16 \int_{D} f(x, y) d x d y=\frac{1}{8}-\int_{\frac{1}{4}}^{\frac{3}{4}} \int_{\frac{1}{4}}^{\frac{3}{16 x}} d y d x=\frac{1}{8}-\int_{\frac{1}{4}}^{\frac{3}{4}}\left(\frac{3}{16 x}-\frac{1}{4}\right) d x=\frac{1}{4}-\frac{3 \ln 3}{16} ∫Df(x,y)dxdy=81−∫4143∫4116x3dydx=81−∫4143(16x3−41)dx=41−163ln3
三、(15分) X ∼ N ( 0 , 1 ) , X \sim N(0,1), X∼N(0,1), 求 Y = X 2 Y=X^{2} Y=X2 的密度函数.
Solution: 当 y ≥ 0 y \geq 0 y≥0 时,
F ( y ) = P { Y ≤ y } = P { X 2 ≤ > y } = P { − y ≤ X ≤ y } = 2 Φ ( y ) − 1 F(y)=P\{Y \leq y\}=P\left\{X^{2} \leq>y\right\}=P\{-\sqrt{y} \leq X \leq \sqrt{y}\}=2 \Phi(\sqrt{y})-1 F(y)=P{ Y≤y}=P{ X2≤>y}=P{ −y≤X≤y}=2Φ(y)−1, 故
f Y ( y ) = F ′ ( y ) = 2 φ ( y ) ⋅ 1 2 y = 1 2 π y e − y 2 , y ≥ 0 f_{Y}(y)=F^{\prime}(y)=2 \varphi(\sqrt{y}) \cdot \frac{1}{2 \sqrt{y}}=\frac{1}{\sqrt{2 \pi y}} e^{-\frac{y}{2}}, y \geq 0 fY(y)=F′(y)=2φ(y)⋅2y1=2πy1e−2y,y≥0
四、(30分) 记(0,1),(1,0),(0,0)三点围成的区域为 D , ( X , Y ) D,(X, Y) D,(X,Y)服从 D D D上的均匀分布, 求
(1)(15分) E ( X + Y ) , Var ( X + Y ) E(X+Y), \operatorname{Var}(X+Y) E(X+Y),Var(X+Y);
(2)(15分) X , Y X, Y X,Y 的相关系数.
Solution: (1) E ( X + Y ) = 2 ∫ 0 1 ∫ 0 1 − y ( x + y ) d x d y = ∫ 0 1 ( 1 − y 2 ) d y = 1 − 1 3 = 2 3 E(X+Y)=2 \int_{0}^{1} \int_{0}^{1-y}(x+y) d x d y=\int_{0}^{1}\left(1-y^{2}\right) d y=1-\frac{1}{3}=\frac{2}{3} E(X+Y)=2∫01∫01−y(x+y)dxdy=∫01(1−y2)dy=1−31=32, E ( X + Y ) 2 = 2 ∫ 0 1 ∫ 0 1 − y ( x + y ) 2 d x d y = 2 3 ∫ 0 1 ( 1 − y 3 ) d y = 2 3 ( 1 − 1 4 ) = 1 2 , E(X+Y)^{2}=2 \int_{0}^{1} \int_{0}^{1-y}(x+y)^{2} d x d y=\frac{2}{3} \int_{0}^{1}\left(1-y^{3}\right) d y=\frac{2}{3}\left(1-\frac{1}{4}\right)=\frac{1}{2}, E(X+Y)2=2∫01∫01−y(x+y)2dxdy=32∫01(1−y3)dy=32(1−41)=21, 因此
Var ( X + Y ) = 1 2 − 4 9 = 1 18 . \operatorname{Var}(X+Y)=\frac{1}{2}-\frac{4}{9}=\frac{1}{18}. Var(X+Y)=21−94=181.(2) E X Y = 2 ∫ 0 1 ∫ 0 1 − y x y d x d y = ∫ 0 1 ( y 3 − 2 y 2 + y ) d y = 1 4 − 2 3 + 1 2 = 1 12 E X Y=2 \int_{0}^{1} \int_{0}^{1-y} x y d x d y=\int_{0}^{1}\left(y^{3}-2 y^{2}+y\right) d y=\frac{1}{4}-\frac{2}{3}+\frac{1}{2}=\frac{1}{12} EXY=2∫01∫01−yxydxdy=∫01(y3−2y2+y)dy=41−32+21=121, E X = E Y = 2 ∫ 0 1 ∫ 0 1 − y x d x d y = ∫ 0 1 ( y 2 − 2 y + 1 ) d y = 1 3 − 1 + 1 = 1 3 , E X=E Y=2 \int_{0}^{1} \int_{0}^{1-y} x d x d y=\int_{0}^{1}\left(y^{2}-2 y+1\right) d y=\frac{1}{3}-1+1=\frac{1}{3}, EX=EY=2∫01∫01−yxdxdy=∫01(y2−2y+1)dy=31−1+1=31, 故
Cov ( X , Y ) = 1 12 − 1 9 = − 1 36 . \operatorname{Cov}(X, Y)=\frac{1}{12}-\frac{1}{9}=-\frac{1}{36}. Cov(X,Y)=121−91=−361. E X 2 = 2 ∫ 0 1 ∫ 0 1 − y x 2 d x d y = 2 3 ∫ 0 1 ( 1 − y ) 3 d y = 1 6 , E X^{2}=2 \int_{0}^{1} \int_{0}^{1-y} x^{2} d x d y=\frac{2}{3}\int_{0}^{1}(1-y)^{3} d y=\frac{1}{6}, EX2=2∫01∫01−yx2dxdy=32∫01(1−y)3dy=61, 故 Var ( X ) = Var ( Y ) = 1 6 − 1 9 = 1 18 , \operatorname{Var}(X)=\operatorname{Var}(Y)=\frac{1}{6}-\frac{1}{9}=\frac{1}{18}, Var(X)=Var(Y)=61−91=181,进而有 ρ X Y = − 1 2 \rho_{X Y}=-\frac{1}{2} ρXY=−21.
五、(15分) 对于两个只有两个取值的随机变量 X , Y , X, Y, X,Y, 试证明 X , Y X, Y X,Y独立当且仅当 X , Y X, Y X,Y不相关.
Solution:
X = x 1 X=x_{1} X=x1 | X = x 2 X=x_{2} X=x2 | ||
---|---|---|---|
Y = y 1 Y=y_{1} Y=y1 | p 11 p_{11} p11 | p 21 p_{21} p21 | 1 − q 1-q 1−q |
Y = y 2 Y=y_{2} Y=y2 | p 12 p_{12} p12 | p 22 p_{22} p22 | q q q |
1 − p 1-p 1−p | p p p |
Solution: 独立一定不相关, 只需证明充分性. 不妨仅讨论 X ′ = X − x 1 x 2 − x 1 X'=\frac{X-x_1}{x_2-x_1} X′=x2−x1X−x1, Y ′ = Y − y 1 y 2 − y 1 Y'=\frac{Y-y_1}{y_2-y_1} Y′=y2−y1Y−y1, X , Y X,Y X,Y不相关与 X ′ , Y ′ X',Y' X′,Y′不相关是等价的. 当 X ′ , Y ′ X',Y' X′,Y′不相关时, 说明 p 22 = E ( X ′ Y ′ ) = E ( X ′ ) E ( Y ′ ) = p q , p_{22}=E(X'Y')=E(X')E(Y')=pq, p22=E(X′Y′)=E(X′)E(Y′)=pq,进一步有 p 21 = p − p 22 = p − p q = p ( 1 − q ) , p_{21}=p-p_{22}=p-pq=p(1-q), p21=p−p22=p−pq=p(1−q), p 12 = q − p 22 = q − p q = q ( 1 − p ) , p_{12}=q-p_{22}=q-pq=q(1-p), p12=q−p22=q−pq=q(1−p), p 11 = 1 − p − p 12 = ( 1 − p ) − q ( 1 − p ) = ( 1 − p ) ( 1 − q ) . p_{11}=1-p-p_{12}=(1-p)-q(1-p)=(1-p)(1-q). p11=1−p−p12=(1−p)−q(1−p)=(1−p)(1−q). 因此 X ′ , Y ′ X',Y' X′,Y′独立, 故 X , Y X,Y X,Y也独立.
六、(15分) 设有来自总体 X ∼ N ( μ , σ 2 ) X \sim N\left(\mu, \sigma^{2}\right) X∼N(μ,σ2)的 2 n 2 n 2n个随机样本, 试求期望
E ( ∑ i = 1 n ( X i + X n + i − 2 X ˉ ) 2 ) . E\left(\sum_{i=1}^{n}\left(X_{i}+X_{n+i}-2 \bar{X}\right)^{2}\right). E(i=1∑n(Xi+Xn+i−2Xˉ)2).
Solution: 记 Y i = X i + X n + i , i = 1 , 2 , … , n Y_{i}=X_{i}+X_{n+i}, i=1,2, \ldots, n Yi=Xi+Xn+i,i=1,2,…,n, 这样 Y 1 , Y 2 , … , Y n Y_{1}, Y_{2}, \ldots, Y_{n} Y1,Y2,…,Yn 就是来自于总体 N ( 2 μ , 2 σ 2 ) N\left(2 \mu, 2 \sigma^{2}\right) N(2μ,2σ2) 的 n n n 个随机样本, Y ˉ = 2 X ˉ \bar{Y}=2 \bar{X} Yˉ=2Xˉ, 根据样本方差的定义和性质, 我们有 1 2 σ 2 ∑ i = 1 n ( X i + X n + i − 2 X ˉ ) 2 = 1 2 σ 2 ∑ i = 1 n ( Y i − Y ˉ ) 2 ∼ χ 2 ( n − 1 ) \frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(X_{i}+X_{n+i}-2 \bar{X}\right)^{2}=\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)^{2} \sim \chi^{2}(n-1) 2σ21i=1∑n(Xi+Xn+i−2Xˉ)2=2σ21i=1∑n(Yi−Yˉ)2∼χ2(n−1) 因此
E ∑ i = 1 n ( X i + X n + i − 2 X ˉ ) 2 = 2 ( n − 1 ) σ 2 . E \sum_{i=1}^{n}\left(X_{i}+X_{n+i}-2 \bar{X}\right)^{2}=2(n-1)\sigma^{2}. Ei=1∑n(Xi+Xn+i−2Xˉ)2=2(n−1)σ2.
七、(15分) X 1 , X 2 , X 3 X_{1}, X_{2}, X_{3} X1,X2,X3, 是i.i.d.的服从 U ( 0 , 1 ) U(0,1) U(0,1)的随机变量, 求次序统计量 X ( 1 ) X_{(1)} X(1)的分布函数与期望.
Solution: 设 Y = X ( 1 ) Y=X_{(1)} Y=X(1), 当 y ∈ ( 0 , 1 ) y \in(0,1) y∈(0,1) 时, P { Y ≥ y } = P ( min { X 1 , X 2 , X 3 } ≥ y ) = P 3 { X 1 ≥ y } = ( 1 − y ) 3 P\{Y \geq y\}=P\left(\min \left\{X_{1}, X_{2}, X_{3}\right\} \geq y\right)=P^{3}\left\{X_{1} \geq y\right\}=(1-y)^{3} P{ Y≥y}=P(min{ X1,X2,X3}≥y)=P3{ X1≥y}=(1−y)3 所以分布函数是
F ( y ) = { 0 , y < 0 , 1 − ( 1 − y ) 3 , 0 ≤ y < 1 , 1 , y ≥ 1. F(y)=\left\{\begin{array}{lc}0, & y<0, \\ 1-(1-y)^{3}, & 0 \leq y<1, \\ 1, & y \geq 1 .\end{array}\right. F(y)=⎩⎨⎧0,1−(1−y)3,1,y<0,0≤y<1,y≥1. 这恰好是 Beta ( 1 , 3 ) \operatorname{Beta}(1,3) Beta(1,3)的分布函数. E Y = ∫ 0 1 y d F ( y ) = 1 ⋅ F ( 1 ) − ∫ 0 1 [ 1 − ( 1 − y ) 3 ] d y = 1 4 E Y=\int_{0}^{1} y d F(y)=1 \cdot F(1)-\int_{0}^{1}\left[1-(1-y)^{3}\right] d y=\frac{1}{4} EY=∫01ydF(y)=1⋅F(1)−∫01[1−(1−y)3]dy=41
八、(30分) 有来自 X ∼ f ( x ) = { θ , 0 ≤ x < 1 1 − θ , 1 ≤ x < 2 , 0 , otherwise X \sim f(x)=\left\{\begin{array}{cl}\theta, & 0 \leq x<1 \\ 1-\theta, & 1 \leq x<2, \\ 0, & \text { otherwise }\end{array}\right. X∼f(x)=⎩⎨⎧θ,1−θ,0,0≤x<11≤x<2, otherwise 的 n n n 个简单随机样本, 求
(1)(15分) θ \theta θ 的矩估计;
(2)(15分) θ \theta θ 的最大似然估计, 已知 m = ∑ i = 1 n I [ X i < 1 ] m=\sum_{i=1}^{n} I\left[X_{i}<1\right] m=∑i=1nI[Xi<1].
Solution: (1) E X = ∫ 0 1 x θ d x + ∫ 1 2 x ( 1 − θ ) d x = 3 2 − θ E X=\int_{0}^{1} x \theta d x+\int_{1}^{2} x(1-\theta) d x=\frac{3}{2}-\theta EX=∫01xθdx+∫12x(1−θ)dx=23−θ, 因此 θ ^ 1 = 3 2 − X ˉ . \hat{\theta}_{1}=\frac{3}{2}-\bar{X}. θ^1=23−Xˉ.(2) 似然函数 L ( x 1 , … , x n ; θ ) = θ m ( 1 − θ ) n − m , L\left(x_{1}, \ldots, x_{n} ; \theta\right)=\theta^{m}(1-\theta)^{n-m}, L(x1,…,xn;θ)=θm(1−θ)n−m,
ln L = m ln θ + ( n − m ) ln ( 1 − θ ) \ln L=m \ln \theta+(n-m) \ln(1-\theta) lnL=mlnθ+(n−m)ln(1−θ), 对 θ \theta θ 求偏导, 得 ∂ ln L ∂ θ = m θ − n − m 1 − θ = l e t 0 , \frac{\partial \ln L}{\partial \theta}=\frac{m}{\theta}-\frac{n-m}{1-\theta} \stackrel{l e t}{=} 0, ∂θ∂lnL=θm−1−θn−m=let0,解得 θ ^ 2 = m n \hat{\theta}_{2}=\frac{m}{n} θ^2=nm.
边栏推荐
- Implement queue with stack
- 初识指针笔记
- Small exercise of library management system
- String class
- Questions and answers of "basic experiment" in the first semester of the 22nd academic year of Xi'an University of Electronic Science and technology
- There is always one of the eight computer operations that you can't learn programming
- TYUT太原理工大学2022数据库题库选择题总结
- 最新坦克大战2022-全程开发笔记-2
- Summary of multiple choice questions in the 2022 database of tyut Taiyuan University of Technology
- 2.C语言初阶练习题(2)
猜你喜欢
Differences and application scenarios between MySQL index clock B-tree, b+tree and hash indexes
How do architects draw system architecture blueprints?
Alibaba cloud microservices (I) service registry Nacos, rest template and feign client
3.猜数字游戏
2.初识C语言(2)
TYUT太原理工大学2022软工导论大题汇总
2.C语言矩阵乘法
IPv6 experiment
IPv6 experiment
MySQL Database Constraints
随机推荐
4.分支语句和循环语句
TYUT太原理工大学2022数据库大题之分解关系模式
5. Download and use of MSDN
Tyut Taiyuan University of technology 2022 introduction to software engineering summary
[Topic terminator]
TYUT太原理工大学2022数据库大题之E-R图转关系模式
最新坦克大战2022-全程开发笔记-2
Conceptual model design of the 2022 database of tyut Taiyuan University of Technology
Introduction and use of redis
Abstract classes and interfaces
Arduino+ water level sensor +led display + buzzer alarm
六种集合的遍历方式总结(List Set Map Queue Deque Stack)
分支语句和循环语句
6. Function recursion
Floating point comparison, CMP, tabulation ideas
JS interview questions (I)
Rich Shenzhen people and renting Shenzhen people
Questions and answers of "Fundamentals of RF circuits" in the first semester of the 22nd academic year of Xi'an University of Electronic Science and technology
3.猜数字游戏
View UI Plus 發布 1.3.1 版本,增强 TypeScript 使用體驗