当前位置:网站首页>[21-Day Learning Challenge] A small summary of sequential search and binary search
[21-Day Learning Challenge] A small summary of sequential search and binary search
2022-08-02 00:18:00 【Xiao Lu wants to brush the force and deduct the question】
活动地址:CSDN21天学习挑战赛
文章目录
顺序查找
What is a sequential search
Sequential search is often used in our life
For example, we want to find a card in a pile of playing cards,
How do we find it
The easiest way is to find them one by one
This is the principle of sequential search
Sequential search is to traverse the array from the beginning to the end,Find the desired number

代码
for(int i=0;i<arr.length;i++){
if(arr[i]==target){
return i;
}
}
时间复杂度
Because the worst case is to traverse the array,
因此时间复杂度为O(n)
*二分查找
给定一个 n 个元素有序的(升序)整型数组 nums 和一个目标值 target ,写一个函数搜索 nums 中的 target,如果目标值存在返回下标,否则返回 -1.
来源:力扣(LeetCode)
链接:https://leetcode.cn/problems/binary-search
著作权归领扣网络所有.商业转载请联系官方授权,非商业转载请注明出处.
什么是二分查找
以升序数列为例,比较一个元素与数列中的中间位置的元素的大小,如果比中间位置的元素大,则继续在后半部分的数列中进行二分查找;如果比中间位置的元素小,则在数列的前半部分进行比较;如果相等,则找到了元素的位置.每次比较的数列长度都会是之前数列的一半,直到找到相等元素的位置或者最终没有找到要找的元素.
简单来说,Just look for the big ones to the right,If you see a small one, look left

nums[m]<target,So look on the right
nums[m]==target,ans=5
代码
class Solution {
public int search(int[] nums, int target) {
int n=nums.length;
int l=0;
int r=n-1;
while(l<=r){
int m=l+(r-l)/2;
if(nums[m]<target){
l=m+1;
}else if(nums[m]>target){
r=m-1;
}else{
return m;
}
}
return -1;
}
}
进阶:在一个有序数组中,找>=某个数最左侧的位置

一直二分到死
代码
public static int nearestIndex(int[] arr, int value) {
int L = 0;
int R = arr.length - 1;
int index = -1; // 记录最左的对号
while (L <= R) {
// 至少一个数的时候
int mid = L + ((R - L) >> 1);
if (arr[mid] >= value) {
index = mid;
R = mid - 1;
} else {
L = mid + 1;
}
}
return index;
}
同理,在一个有序数组中,找<=某个数最右侧的位置,It's the same solution
public static int nearestIndex(int[] arr, int value) {
int L = 0;
int R = arr.length - 1;
int index = -1; // 记录最右的对号
while (L <= R) {
int mid = L + ((R - L) >> 1);
if (arr[mid] <= value) {
index = mid;
L = mid + 1;
} else {
R = mid - 1;
}
}
return index;
}
进阶2:局部最小值问题
在一个无序数组中, The value may be positive, 负, 或者零, Any two adjacent numbers in an array must not be equal.
Define a local minimum:
1.长度为1,arr[0]就是局部最小;
2.数组的开头,如果arr[0] < arr[1] ,arr[0]is defined as a local minimum.
3.数组的结尾,如果arr[N-1] < arr[N-2] ,arr[N-1]is defined as a local minimum.
any intermediate positioni, 即数组下标1~N-2之间, 必须满足arr[i-1] < arr[i] <arr[i+1] ,is called finding a local minimum.
Find any local minimum and return it.
解题思路
先单独看0位置和n-1位置,If neither side is a local minimum,Then if you connect each number of the array on the coordinate axis,There must be a local minimum position,从中间分开,If the middle position is not a local minimum,It doesn't matter which half it is,There are also local minima,Something like this builds something like exclusivity,two points,

代码
public static int getLessIndex(int[] arr) {
if (arr == null || arr.length == 0) {
return -1;
}
if (arr.length == 1 || arr[0] < arr[1]) {
return 0;
}
if (arr[arr.length - 1] < arr[arr.length - 2]) {
return arr.length - 1;
}
int left = 1;
int right = arr.length - 2;
int mid = 0;
while (left < right) {
mid = (left + right) / 2;
if (arr[mid] > arr[mid - 1]) {
right = mid - 1;
} else if (arr[mid] > arr[mid + 1]) {
left = mid + 1;
} else {
return mid;
}
}
return left;
}
二分总结
1)数据状况特殊
2)The problem itself is special
Dichotomy does not necessarily require order
Depends what your problem is,Depends on what your data status is
As long as you can build something exclusive, There must be half on the left and right sides,The other half may not
If you are only looking for one,Just cut in half, As long as you can build something like exclusivity, You get two points,不一定要求数组有序
边栏推荐
- Axure tutorial - the new base (small white strongly recommended!!!)
- Short video SEO search operation customer acquisition system function introduction
- els block deformation judgment.
- How to design a circular queue?Come and learn~
- 微软电脑管家V2.1公测版正式发布
- Short video seo search optimization main content
- 具有通信时延的多自主体系统时变参考输入的平均一致性跟踪
- Is TCP reliable?Why?
- Async/await principle and execution sequence analysis
- 一文概览最实用的 DeFi 工具
猜你喜欢

中缀转后缀、前缀表达式快速解决办法

Unknown CMake command “add_action_files“

协作乐高 All In One:DAO工具大全

【解决】win10下emqx启动报错Unable to load emulator DLL、node.db_role = EMQX_NODE__DB_ROLE = core

扑克牌问题

单片机遥控开关系统设计(结构原理、电路、程序)

短视频seo搜索优化主要内容

How to get the best power efficiency in Windows 11?

为什么要使用MQ消息中间件?这几个问题必须拿下

security CSRF Vulnerability Protection
随机推荐
Don't know about SynchronousQueue?So ArrayBlockingQueue and LinkedBlockingQueue don't and don't know?
含外部储能的电力系统暂态稳定分布式控制
Collection of NFT tools
Deliver cloud-native microservices applications with Zadig
Short video SEO search operation customer acquisition system function introduction
How to find new potential projects?Tools recommended
GetHashCode与Equals
Win11内存管理错误怎么办?
JSP out.print()和out.write()方法的不同之处
学习笔记:机器学习之回归
06-SDRAM : SDRAM control module
为什么要使用MQ消息中间件?这几个问题必须拿下
IP Core: FIFO
QML包管理
控制电机的几种控制电路原理图
[Headline] Written test questions - minimum stack
easy-excel 解决百万数据导入导出,性能很强
【三子棋】C语言实现简易三子棋
els 方块边界变形处理
【解决】win10下emqx启动报错Unable to load emulator DLL、node.db_role = EMQX_NODE__DB_ROLE = core