当前位置:网站首页>Machine Learning Overview
Machine Learning Overview
2022-08-05 04:11:00 【Mika grains】
1.1人工智能概述
达特茅斯会议-人工智能的起点
机器学习是人工智能的一个实现途径
深度学习是机器学习的一个方法发展而来
1.1.2机器学习、深度学习能做些什么
传统预测
图像识别
自然语言处理
1.2什么是机器学习
数据、模型、预测
从历史数据中获得规律?这些历史数据是怎么的格式?
1.2.3数据集构成
特征值+目标值
1.3机器学习算法分类
监督学习
目标值:类别——分类问题
k-近邻算法、贝叶斯分类、决策树与随机森林、逻辑回归
目标值:连续型的数据-回归问题
线性回归、岭回归
目标值:无-无监督学习
聚类 k-means
1、Predict what the temperature will be tomorrow? 回归
2、预测明天是阴、晴、雨? 分类
3、Face age prediction? 回归/分类
4、人脸识别 ? 分类
2.1数据集
2.1.1可用数据集
公司内部 百度
数据接口 花钱
数据集
学习阶段可以用的数据集:
1、sklearn
2、kaggle
3、UCI
1 Scikit-learn工具介绍
2.1.2sklearn数据集
sklearn.datasets
load_* 获取小规模数据集
from sklearn.datasets import load_iris
def datasets_demo():
"""
sklearn数据集使用
:return:
"""
# 获取数据集
iris = load_iris()
print("鸢尾花数据集:\n",iris)
print("鸢尾花数据集描述:\n", iris["DESCR"])
print("The name of the iris eigenvalue:\n", iris.feature_names)
print("Iris eigenvalues:\n", iris.data.shape)
return None
if __name__ == "__main__":
# 代码1:sklearn数据集使用
datasets_demo()
运行如下(数据过多,展示部分)
fetch_* 获取大规模数据集
2 sklearn小数据集
sklearn.datasets.load_iris()
3 sklearn大数据集
sklearn.datasets.fetch_20newsgroups(data_home=None)
4 数据集的返回值
datasets.base.Bunch(继承自字典)
dict["key"] = values
bunch.key = values
思考:Whether the obtained data is used to train a model?
2.1.3数据集的划分
训练数据集:用于训练、构建模型
测试数据:is used in model checking,用于评估模型是否有效
测试集 20%~30%
sklearn.model_selection.train_test_split(arrays,*options)
训练集特征值,测试集特征值,训练集目标值,测试集目标值
x_train, x_test, y_train, y_test
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
def datasets_demo():
"""
sklearn数据集使用
:return:
"""
# 获取数据集
iris = load_iris()
print("鸢尾花数据集:\n",iris)
print("鸢尾花数据集描述:\n", iris["DESCR"])
print("The name of the iris eigenvalue:\n", iris.feature_names)
print("Iris eigenvalues:\n", iris.data.shape)
# 数据集的划分
x_train, x_test, y_train, y_test = train_test_split(iris.data, iris.target, test_size=0.2, random_state=22)
print("Features of the training dataset:\n", x_train, x_train.shape)
return None
if __name__ == "__main__":
# 代码1:sklearn数据集使用
datasets_demo()
部分运行结果如下
边栏推荐
- [8.3] Code Source - [meow ~ meow ~ meow~] [tree] [and]
- 35岁的软件测试工程师,月薪不足2W,辞职又怕找不到工作,该何去何从?
- [8.2] Code Source - [Currency System] [Coins] [New Year's Questions (Data Enhanced Edition)] [Three Stages]
- 4T硬盘剩余很多提示“No space left on device“磁盘空间不足
- 特征预处理
- C+ +核心编程
- No regrets, the appium automation environment is perfectly built
- Slapped in the face: there are so many testers in a certain department of byte
- DNS被劫持如何处理?
- Qixi Festival earn badges
猜你喜欢
MySql的索引学习和使用;(本人觉得足够详细)
UE4 通过重叠事件开启门
How do newcomers get started and learn software testing?
This year's Qixi Festival, "love vegetables" are more loving than gifts
将故事写成我们
开发属于自己的node包
Walter talked little knowledge | "remote passthrough" that something
Mysql的redo log详解
[MRCTF2020]Ezpop(详解)
35岁的软件测试工程师,月薪不足2W,辞职又怕找不到工作,该何去何从?
随机推荐
MySql index learning and use; (I think it is detailed enough)
Mysql的undo log详解
Getting Started with Kubernetes Networking
Qixi Festival earn badges
A 35-year-old software testing engineer with a monthly salary of less than 2W, resigns and is afraid of not finding a job, what should he do?
iMedicalLIS listener (2)
数据库设计的酸(ACID)碱(BASE)原则
How to solve the three major problems of bank data collection, data supplementary recording and index management?
商业智能BI业务分析思维:现金流量风控分析(一)营运资金风险
35岁的软件测试工程师,月薪不足2W,辞职又怕找不到工作,该何去何从?
How to wrap markdown - md file
2022软件测试工程师最全面试题
Mysql's redo log detailed explanation
This year's Qixi Festival, "love vegetables" are more loving than gifts
4T硬盘剩余很多提示“No space left on device“磁盘空间不足
Ali's local life's single-quarter revenue is 10.6 billion, Da Wenyu's revenue is 7.2 billion, and Cainiao's revenue is 12.1 billion
markdown如何换行——md文件
概率论的学习和整理8: 几何分布和超几何分布
Paparazzi: Surface Editing by way of Multi-View Image Processing
36-Jenkins-Job Migration