当前位置:网站首页>AcWing 1298. Solution to Cao Chong's pig raising problem
AcWing 1298. Solution to Cao Chong's pig raising problem
2022-07-06 11:16:00 【Octopus loving monster】
AcWing 1298 . Cao Chong raises pigs Answer key
Title Description
Since Cao Chong got the elephant , Cao Cao began to think about letting his son do something , So he was sent to Zhongyuan pig farm to raise pigs , But Cao Chong was very unhappy , So in the work of careless , Once Cao Cao wanted to know the number of sows , So Cao Chong wanted to play with Cao Cao .
for instance , If there is 16 16 16 A sow , If it's built 3 3 3 A pigsty , be left over 1 1 1 There's no place for a pig to settle down ; If you build 5 5 5 A pigsty , But there is still 1 1 1 A pig has no place to go ; If you build 7 7 7 A pigsty , also 2 2 2 The head has no place to go .
As Mr. Cao's personal secretary, you should report the accurate pig number to Mr. Cao , What are you gonna do? ?
Input format
The first line contains an integer n n n, Indicates the number of times to establish a pigsty ;
Next n n n That's ok , Two integers per line a i , b i a_i,b_i ai,bi Indicates that the a i a_i ai A pigsty , Yes b i b_i bi There's no place for a pig .
You can assume that a i , a j a_i,a_j ai,aj Coprime
Output format
The output contains only one positive integer , That is, at least the number of pigs raised by Cao Chong
Data range
1 ≤ b ≤ 10 1\le b \le 10 1≤b≤10
1 ≤ b i ≤ a i ≤ 1100000 1\le b_i\le a_i\le 1100000 1≤bi≤ai≤1100000
all a i a_i ai The product of does not exceed 1 0 18 10^{18} 1018
Answer key
The test point of this question is Chinese remainder theorem
We describe the Chinese surplus in the following form
Here we give the method of calculating Chinese Remainder Theorem and prove
Calculate the product of all modules n n n
For the first i i i An equation :
a. Calculation m i = n n i m_i=\dfrac{n}{n_i} mi=nin
b. Calculation m i m_i mi In the mold n i n_i ni Inverse element in sense m i − 1 m_i^{-1} mi−1
c. Calculation c i = m i × m i − 1 c_i =m_i\times m_i^{-1} ci=mi×mi−1 ( incorrect n i n_i ni modulus )
The unique solution of the system of equations is : x = ∑ i = 1 k a i c i ( m o d n i ) x=\sum^k_{i=1}a_i~c_i (mod ~n_i) x=∑i=1kai ci(mod ni)
prove :
We can prove the result obtained by this method x x x For arbitrary i = 1 , 2 , … , k i=1,2, \dots,k i=1,2,…,k All meet x ≡ a i ( m o d n i ) x ~\equiv~ a_i~(mod~n_i) x ≡ ai (mod ni)
When i ≠ j i\neq j i=j when , Yes
m j ≡ 0 ( m o d n i ) m_j \equiv 0~(mod~ n_i) mj≡0 (mod ni)
For
c j ≡ m j ≡ 0 ( m o d n i ) c_j \equiv m_j \equiv 0 ~(mod ~n_i) cj≡mj≡0 (mod ni)
According to
c i = m i × m i − 1 ≡ 1 ( m o d n i ) c_i = m_i\times m_i^{-1}\equiv 1~(mod~n_i) ci=mi×mi−1≡1 (mod ni)
For x x x Yes
x ≡ ∑ j = 1 k a j c j ( m o d n i ) ≡ a i c i ( m o d n i ) ≡ a i × 1 ( m o d n i ) ≡ a i ( m o d n i ) x\equiv\displaystyle\sum_{j=1}^ka_j c_j ~~~~~~(mod ~n_i) \\ \equiv a_ic_i~~\qquad(mod n_i) \\ \equiv a_i\times1~~~~~~(mod n_i) \\ \equiv a_i~~~~~\qquad(mod n_i) x≡j=1∑kajcj (mod ni)≡aici (modni)≡ai×1 (modni)≡ai (modni)
Obtain evidence
Find the inverse element in the sense of module
Then the idea of this topic becomes very clear , Now the question is how Find the inverse element in the sense of module
Let's look at a formula
a a − 1 ≡ 1 ( m o d c ) aa^{-1} \equiv 1~(mod ~c) aa−1≡1 (mod c)
Deformation can be obtained
a a − 1 = k c + 1 aa^{-1} = kc+1 aa−1=kc+1
transposition
a a − 1 − k c = 1 aa^{-1} -kc =1 aa−1−kc=1
It is observed that it is shaped like Euclidean equation
a x + b y = c ax+by=c ax+by=c
Therefore, it can be solved by extended Euclidean
Complete code
import java.io.*;
import java.util.*;
class Main
{
static long sum=1;
static int n;
static int[] a=new int[10];
static int[] c=new int[10];
static long x;
static long y;
static long res=0;
public static long exgcd(long a,long b)
{
if(b==0)
{
x=1;
y=0;
return a;
}
long d=exgcd(b,a%b);
long tmp=x;
x=y;
y=tmp-(a/b)*x;
return d;
}
public static void main(String[] agrs)throws IOException
{
BufferedReader reader=new BufferedReader(new InputStreamReader(System.in));
n=Integer.parseInt(reader.readLine());
for(int i=0;i<n;i++)
{
String[] param=reader.readLine().split(" ");
c[i]=Integer.parseInt(param[0]);
a[i]=Integer.parseInt(param[1]);
sum*=c[i];
}
for(int i=0;i<n;i++)
{
long m=sum/c[i];
long re=exgcd(m,c[i]);
res=(res+a[i]*m*x%sum)%sum;
}
System.out.println((res%sum+sum)%sum);// Output positive numbers
}
}
边栏推荐
- 1. Mx6u learning notes (VII): bare metal development (4) -- master frequency and clock configuration
- Solution: log4j:warn please initialize the log4j system properly
- AcWing 179.阶乘分解 题解
- 一键提取pdf中的表格
- Copie maître - esclave MySQL, séparation lecture - écriture
- Base de données Advanced Learning Notes - - SQL statements
- CSDN blog summary (I) -- a simple first edition implementation
- Development of C language standard
- Idea import / export settings file
- Ansible实战系列一 _ 入门
猜你喜欢
[recommended by bloggers] C # generate a good-looking QR code (with source code)
QT creator custom build process
Picture coloring project - deoldify
Other new features of mysql18-mysql8
解决安装Failed building wheel for pillow
Dotnet replaces asp Net core's underlying communication is the IPC Library of named pipes
一键提取pdf中的表格
连接MySQL数据库出现错误:2059 - authentication plugin ‘caching_sha2_password‘的解决方法
Some problems in the development of unity3d upgraded 2020 VR
Install mongdb tutorial and redis tutorial under Windows
随机推荐
SSM integrated notes easy to understand version
虚拟机Ping通主机,主机Ping不通虚拟机
【博主推荐】asp.net WebService 后台数据API JSON(附源码)
Invalid global search in idea/pychar, etc. (win10)
frp内网穿透那些事
Introduction and use of automatic machine learning framework (flaml, H2O)
Solve the problem that XML, YML and properties file configurations cannot be scanned
csdn-Markdown编辑器
01 project demand analysis (ordering system)
MySQL completely uninstalled (windows, MAC, Linux)
CSDN Q & a tag skill tree (V) -- cloud native skill tree
Some notes of MySQL
引入了junit为什么还是用不了@Test注解
A trip to Macao - > see the world from a non line city to Macao
Some problems in the development of unity3d upgraded 2020 VR
Postman environment variable settings
【博主推荐】SSM框架的后台管理系统(附源码)
Use dapr to shorten software development cycle and improve production efficiency
Postman uses scripts to modify the values of environment variables
Number game