当前位置:网站首页>AcWing 1298. Solution to Cao Chong's pig raising problem
AcWing 1298. Solution to Cao Chong's pig raising problem
2022-07-06 11:16:00 【Octopus loving monster】
AcWing 1298 . Cao Chong raises pigs Answer key
Title Description
Since Cao Chong got the elephant , Cao Cao began to think about letting his son do something , So he was sent to Zhongyuan pig farm to raise pigs , But Cao Chong was very unhappy , So in the work of careless , Once Cao Cao wanted to know the number of sows , So Cao Chong wanted to play with Cao Cao .
for instance , If there is 16 16 16 A sow , If it's built 3 3 3 A pigsty , be left over 1 1 1 There's no place for a pig to settle down ; If you build 5 5 5 A pigsty , But there is still 1 1 1 A pig has no place to go ; If you build 7 7 7 A pigsty , also 2 2 2 The head has no place to go .
As Mr. Cao's personal secretary, you should report the accurate pig number to Mr. Cao , What are you gonna do? ?
Input format
The first line contains an integer n n n, Indicates the number of times to establish a pigsty ;
Next n n n That's ok , Two integers per line a i , b i a_i,b_i ai,bi Indicates that the a i a_i ai A pigsty , Yes b i b_i bi There's no place for a pig .
You can assume that a i , a j a_i,a_j ai,aj Coprime
Output format
The output contains only one positive integer , That is, at least the number of pigs raised by Cao Chong
Data range
1 ≤ b ≤ 10 1\le b \le 10 1≤b≤10
1 ≤ b i ≤ a i ≤ 1100000 1\le b_i\le a_i\le 1100000 1≤bi≤ai≤1100000
all a i a_i ai The product of does not exceed 1 0 18 10^{18} 1018
Answer key
The test point of this question is Chinese remainder theorem
We describe the Chinese surplus in the following form 
Here we give the method of calculating Chinese Remainder Theorem and prove
Calculate the product of all modules n n n
For the first i i i An equation :
a. Calculation m i = n n i m_i=\dfrac{n}{n_i} mi=nin
b. Calculation m i m_i mi In the mold n i n_i ni Inverse element in sense m i − 1 m_i^{-1} mi−1
c. Calculation c i = m i × m i − 1 c_i =m_i\times m_i^{-1} ci=mi×mi−1 ( incorrect n i n_i ni modulus )
The unique solution of the system of equations is : x = ∑ i = 1 k a i c i ( m o d n i ) x=\sum^k_{i=1}a_i~c_i (mod ~n_i) x=∑i=1kai ci(mod ni)
prove :
We can prove the result obtained by this method x x x For arbitrary i = 1 , 2 , … , k i=1,2, \dots,k i=1,2,…,k All meet x ≡ a i ( m o d n i ) x ~\equiv~ a_i~(mod~n_i) x ≡ ai (mod ni)
When i ≠ j i\neq j i=j when , Yes
m j ≡ 0 ( m o d n i ) m_j \equiv 0~(mod~ n_i) mj≡0 (mod ni)
For
c j ≡ m j ≡ 0 ( m o d n i ) c_j \equiv m_j \equiv 0 ~(mod ~n_i) cj≡mj≡0 (mod ni)
According to
c i = m i × m i − 1 ≡ 1 ( m o d n i ) c_i = m_i\times m_i^{-1}\equiv 1~(mod~n_i) ci=mi×mi−1≡1 (mod ni)
For x x x Yes
x ≡ ∑ j = 1 k a j c j ( m o d n i ) ≡ a i c i ( m o d n i ) ≡ a i × 1 ( m o d n i ) ≡ a i ( m o d n i ) x\equiv\displaystyle\sum_{j=1}^ka_j c_j ~~~~~~(mod ~n_i) \\ \equiv a_ic_i~~\qquad(mod n_i) \\ \equiv a_i\times1~~~~~~(mod n_i) \\ \equiv a_i~~~~~\qquad(mod n_i) x≡j=1∑kajcj (mod ni)≡aici (modni)≡ai×1 (modni)≡ai (modni)
Obtain evidence
Find the inverse element in the sense of module
Then the idea of this topic becomes very clear , Now the question is how Find the inverse element in the sense of module
Let's look at a formula
a a − 1 ≡ 1 ( m o d c ) aa^{-1} \equiv 1~(mod ~c) aa−1≡1 (mod c)
Deformation can be obtained
a a − 1 = k c + 1 aa^{-1} = kc+1 aa−1=kc+1
transposition
a a − 1 − k c = 1 aa^{-1} -kc =1 aa−1−kc=1
It is observed that it is shaped like Euclidean equation
a x + b y = c ax+by=c ax+by=c
Therefore, it can be solved by extended Euclidean
Complete code
import java.io.*;
import java.util.*;
class Main
{
static long sum=1;
static int n;
static int[] a=new int[10];
static int[] c=new int[10];
static long x;
static long y;
static long res=0;
public static long exgcd(long a,long b)
{
if(b==0)
{
x=1;
y=0;
return a;
}
long d=exgcd(b,a%b);
long tmp=x;
x=y;
y=tmp-(a/b)*x;
return d;
}
public static void main(String[] agrs)throws IOException
{
BufferedReader reader=new BufferedReader(new InputStreamReader(System.in));
n=Integer.parseInt(reader.readLine());
for(int i=0;i<n;i++)
{
String[] param=reader.readLine().split(" ");
c[i]=Integer.parseInt(param[0]);
a[i]=Integer.parseInt(param[1]);
sum*=c[i];
}
for(int i=0;i<n;i++)
{
long m=sum/c[i];
long re=exgcd(m,c[i]);
res=(res+a[i]*m*x%sum)%sum;
}
System.out.println((res%sum+sum)%sum);// Output positive numbers
}
}
边栏推荐
- [recommended by bloggers] C WinForm regularly sends email (with source code)
- PyCharm中无法调用numpy,报错ModuleNotFoundError: No module named ‘numpy‘
- 基于apache-jena的知识问答
- csdn-Markdown编辑器
- Ansible实战系列三 _ task常用命令
- 【博主推荐】C#MVC列表实现增删改查导入导出曲线功能(附源码)
- Why is MySQL still slow to query when indexing is used?
- SSM整合笔记通俗易懂版
- MySQL完全卸载(Windows、Mac、Linux)
- AI benchmark V5 ranking
猜你喜欢

【博主推荐】C# Winform定时发送邮箱(附源码)

Swagger、Yapi接口管理服务_SE

windows下同时安装mysql5.5和mysql8.0

自动机器学习框架介绍与使用(flaml、h2o)

【博主推荐】C#生成好看的二维码(附源码)

CSDN question and answer module Title Recommendation task (II) -- effect optimization

Esp8266 at+cipstart= "", "", 8080 error closed ultimate solution

CSDN question and answer module Title Recommendation task (I) -- Construction of basic framework

Data dictionary in C #

LeetCode #461 汉明距离
随机推荐
CSDN blog summary (I) -- a simple first edition implementation
Django running error: error loading mysqldb module solution
Installation and use of MySQL under MySQL 19 Linux
Swagger、Yapi接口管理服务_SE
Neo4j installation tutorial
Julia 1.6 1.7 common problem solving
02 staff information management after the actual project
npm一个错误 npm ERR code ENOENT npm ERR syscall open
CSDN question and answer tag skill tree (I) -- Construction of basic framework
MySQL master-slave replication, read-write separation
AcWing 1294.樱花 题解
安全测试涉及的测试对象
AcWing 179.阶乘分解 题解
虚拟机Ping通主机,主机Ping不通虚拟机
机器学习笔记-Week02-卷积神经网络
基于apache-jena的知识问答
01 project demand analysis (ordering system)
解决安装Failed building wheel for pillow
NPM an error NPM err code enoent NPM err syscall open
Request object and response object analysis