当前位置:网站首页>AcWing 1298. Solution to Cao Chong's pig raising problem
AcWing 1298. Solution to Cao Chong's pig raising problem
2022-07-06 11:16:00 【Octopus loving monster】
AcWing 1298 . Cao Chong raises pigs Answer key
Title Description
Since Cao Chong got the elephant , Cao Cao began to think about letting his son do something , So he was sent to Zhongyuan pig farm to raise pigs , But Cao Chong was very unhappy , So in the work of careless , Once Cao Cao wanted to know the number of sows , So Cao Chong wanted to play with Cao Cao .
for instance , If there is 16 16 16 A sow , If it's built 3 3 3 A pigsty , be left over 1 1 1 There's no place for a pig to settle down ; If you build 5 5 5 A pigsty , But there is still 1 1 1 A pig has no place to go ; If you build 7 7 7 A pigsty , also 2 2 2 The head has no place to go .
As Mr. Cao's personal secretary, you should report the accurate pig number to Mr. Cao , What are you gonna do? ?
Input format
The first line contains an integer n n n, Indicates the number of times to establish a pigsty ;
Next n n n That's ok , Two integers per line a i , b i a_i,b_i ai,bi Indicates that the a i a_i ai A pigsty , Yes b i b_i bi There's no place for a pig .
You can assume that a i , a j a_i,a_j ai,aj Coprime
Output format
The output contains only one positive integer , That is, at least the number of pigs raised by Cao Chong
Data range
1 ≤ b ≤ 10 1\le b \le 10 1≤b≤10
1 ≤ b i ≤ a i ≤ 1100000 1\le b_i\le a_i\le 1100000 1≤bi≤ai≤1100000
all a i a_i ai The product of does not exceed 1 0 18 10^{18} 1018
Answer key
The test point of this question is Chinese remainder theorem
We describe the Chinese surplus in the following form
Here we give the method of calculating Chinese Remainder Theorem and prove
Calculate the product of all modules n n n
For the first i i i An equation :
a. Calculation m i = n n i m_i=\dfrac{n}{n_i} mi=nin
b. Calculation m i m_i mi In the mold n i n_i ni Inverse element in sense m i − 1 m_i^{-1} mi−1
c. Calculation c i = m i × m i − 1 c_i =m_i\times m_i^{-1} ci=mi×mi−1 ( incorrect n i n_i ni modulus )
The unique solution of the system of equations is : x = ∑ i = 1 k a i c i ( m o d n i ) x=\sum^k_{i=1}a_i~c_i (mod ~n_i) x=∑i=1kai ci(mod ni)
prove :
We can prove the result obtained by this method x x x For arbitrary i = 1 , 2 , … , k i=1,2, \dots,k i=1,2,…,k All meet x ≡ a i ( m o d n i ) x ~\equiv~ a_i~(mod~n_i) x ≡ ai (mod ni)
When i ≠ j i\neq j i=j when , Yes
m j ≡ 0 ( m o d n i ) m_j \equiv 0~(mod~ n_i) mj≡0 (mod ni)
For
c j ≡ m j ≡ 0 ( m o d n i ) c_j \equiv m_j \equiv 0 ~(mod ~n_i) cj≡mj≡0 (mod ni)
According to
c i = m i × m i − 1 ≡ 1 ( m o d n i ) c_i = m_i\times m_i^{-1}\equiv 1~(mod~n_i) ci=mi×mi−1≡1 (mod ni)
For x x x Yes
x ≡ ∑ j = 1 k a j c j ( m o d n i ) ≡ a i c i ( m o d n i ) ≡ a i × 1 ( m o d n i ) ≡ a i ( m o d n i ) x\equiv\displaystyle\sum_{j=1}^ka_j c_j ~~~~~~(mod ~n_i) \\ \equiv a_ic_i~~\qquad(mod n_i) \\ \equiv a_i\times1~~~~~~(mod n_i) \\ \equiv a_i~~~~~\qquad(mod n_i) x≡j=1∑kajcj (mod ni)≡aici (modni)≡ai×1 (modni)≡ai (modni)
Obtain evidence
Find the inverse element in the sense of module
Then the idea of this topic becomes very clear , Now the question is how Find the inverse element in the sense of module
Let's look at a formula
a a − 1 ≡ 1 ( m o d c ) aa^{-1} \equiv 1~(mod ~c) aa−1≡1 (mod c)
Deformation can be obtained
a a − 1 = k c + 1 aa^{-1} = kc+1 aa−1=kc+1
transposition
a a − 1 − k c = 1 aa^{-1} -kc =1 aa−1−kc=1
It is observed that it is shaped like Euclidean equation
a x + b y = c ax+by=c ax+by=c
Therefore, it can be solved by extended Euclidean
Complete code
import java.io.*;
import java.util.*;
class Main
{
static long sum=1;
static int n;
static int[] a=new int[10];
static int[] c=new int[10];
static long x;
static long y;
static long res=0;
public static long exgcd(long a,long b)
{
if(b==0)
{
x=1;
y=0;
return a;
}
long d=exgcd(b,a%b);
long tmp=x;
x=y;
y=tmp-(a/b)*x;
return d;
}
public static void main(String[] agrs)throws IOException
{
BufferedReader reader=new BufferedReader(new InputStreamReader(System.in));
n=Integer.parseInt(reader.readLine());
for(int i=0;i<n;i++)
{
String[] param=reader.readLine().split(" ");
c[i]=Integer.parseInt(param[0]);
a[i]=Integer.parseInt(param[1]);
sum*=c[i];
}
for(int i=0;i<n;i++)
{
long m=sum/c[i];
long re=exgcd(m,c[i]);
res=(res+a[i]*m*x%sum)%sum;
}
System.out.println((res%sum+sum)%sum);// Output positive numbers
}
}
边栏推荐
- CSDN question and answer module Title Recommendation task (II) -- effect optimization
- Antlr4 uses keywords as identifiers
- A brief introduction to the microservice technology stack, the introduction and use of Eureka and ribbon
- Record a problem of raspberry pie DNS resolution failure
- [number theory] divisor
- Django运行报错:Error loading MySQLdb module解决方法
- Ansible实战系列三 _ task常用命令
- 【博主推荐】C#MVC列表实现增删改查导入导出曲线功能(附源码)
- MySQL完全卸载(Windows、Mac、Linux)
- Solve the problem that XML, YML and properties file configurations cannot be scanned
猜你喜欢
windows下同时安装mysql5.5和mysql8.0
Data dictionary in C #
MySQL主从复制、读写分离
学习问题1:127.0.0.1拒绝了我们的访问
Request object and response object analysis
Neo4j installation tutorial
图像识别问题 — pytesseract.TesseractNotFoundError: tesseract is not installed or it‘s not in your path
【博主推荐】SSM框架的后台管理系统(附源码)
CSDN markdown editor
打开浏览器的同时会在主页外同时打开芒果TV,抖音等网站
随机推荐
csdn-Markdown编辑器
Deoldify项目问题——OMP:Error#15:Initializing libiomp5md.dll,but found libiomp5md.dll already initialized.
JDBC原理
CSDN Q & a tag skill tree (V) -- cloud native skill tree
Postman Interface Association
Ubuntu 20.04 安装 MySQL
QT creator specifies dependencies
【博主推荐】C#生成好看的二维码(附源码)
数数字游戏
[recommended by bloggers] C # generate a good-looking QR code (with source code)
CSDN blog summary (I) -- a simple first edition implementation
Principes JDBC
Navicat 导出表生成PDM文件
Project practice - background employee information management (add, delete, modify, check, login and exit)
QT creator runs the Valgrind tool on external applications
1. Mx6u learning notes (VII): bare metal development (4) -- master frequency and clock configuration
Invalid default value for 'create appears when importing SQL_ Time 'error reporting solution
02 staff information management after the actual project
Base de données Advanced Learning Notes - - SQL statements
Unable to call numpy in pycharm, with an error modulenotfounderror: no module named 'numpy‘