当前位置:网站首页>AcWing 1298. Solution to Cao Chong's pig raising problem
AcWing 1298. Solution to Cao Chong's pig raising problem
2022-07-06 11:16:00 【Octopus loving monster】
AcWing 1298 . Cao Chong raises pigs Answer key
Title Description
Since Cao Chong got the elephant , Cao Cao began to think about letting his son do something , So he was sent to Zhongyuan pig farm to raise pigs , But Cao Chong was very unhappy , So in the work of careless , Once Cao Cao wanted to know the number of sows , So Cao Chong wanted to play with Cao Cao .
for instance , If there is 16 16 16 A sow , If it's built 3 3 3 A pigsty , be left over 1 1 1 There's no place for a pig to settle down ; If you build 5 5 5 A pigsty , But there is still 1 1 1 A pig has no place to go ; If you build 7 7 7 A pigsty , also 2 2 2 The head has no place to go .
As Mr. Cao's personal secretary, you should report the accurate pig number to Mr. Cao , What are you gonna do? ?
Input format
The first line contains an integer n n n, Indicates the number of times to establish a pigsty ;
Next n n n That's ok , Two integers per line a i , b i a_i,b_i ai,bi Indicates that the a i a_i ai A pigsty , Yes b i b_i bi There's no place for a pig .
You can assume that a i , a j a_i,a_j ai,aj Coprime
Output format
The output contains only one positive integer , That is, at least the number of pigs raised by Cao Chong
Data range
1 ≤ b ≤ 10 1\le b \le 10 1≤b≤10
1 ≤ b i ≤ a i ≤ 1100000 1\le b_i\le a_i\le 1100000 1≤bi≤ai≤1100000
all a i a_i ai The product of does not exceed 1 0 18 10^{18} 1018
Answer key
The test point of this question is Chinese remainder theorem
We describe the Chinese surplus in the following form 
Here we give the method of calculating Chinese Remainder Theorem and prove
Calculate the product of all modules n n n
For the first i i i An equation :
a. Calculation m i = n n i m_i=\dfrac{n}{n_i} mi=nin
b. Calculation m i m_i mi In the mold n i n_i ni Inverse element in sense m i − 1 m_i^{-1} mi−1
c. Calculation c i = m i × m i − 1 c_i =m_i\times m_i^{-1} ci=mi×mi−1 ( incorrect n i n_i ni modulus )
The unique solution of the system of equations is : x = ∑ i = 1 k a i c i ( m o d n i ) x=\sum^k_{i=1}a_i~c_i (mod ~n_i) x=∑i=1kai ci(mod ni)
prove :
We can prove the result obtained by this method x x x For arbitrary i = 1 , 2 , … , k i=1,2, \dots,k i=1,2,…,k All meet x ≡ a i ( m o d n i ) x ~\equiv~ a_i~(mod~n_i) x ≡ ai (mod ni)
When i ≠ j i\neq j i=j when , Yes
m j ≡ 0 ( m o d n i ) m_j \equiv 0~(mod~ n_i) mj≡0 (mod ni)
For
c j ≡ m j ≡ 0 ( m o d n i ) c_j \equiv m_j \equiv 0 ~(mod ~n_i) cj≡mj≡0 (mod ni)
According to
c i = m i × m i − 1 ≡ 1 ( m o d n i ) c_i = m_i\times m_i^{-1}\equiv 1~(mod~n_i) ci=mi×mi−1≡1 (mod ni)
For x x x Yes
x ≡ ∑ j = 1 k a j c j ( m o d n i ) ≡ a i c i ( m o d n i ) ≡ a i × 1 ( m o d n i ) ≡ a i ( m o d n i ) x\equiv\displaystyle\sum_{j=1}^ka_j c_j ~~~~~~(mod ~n_i) \\ \equiv a_ic_i~~\qquad(mod n_i) \\ \equiv a_i\times1~~~~~~(mod n_i) \\ \equiv a_i~~~~~\qquad(mod n_i) x≡j=1∑kajcj (mod ni)≡aici (modni)≡ai×1 (modni)≡ai (modni)
Obtain evidence
Find the inverse element in the sense of module
Then the idea of this topic becomes very clear , Now the question is how Find the inverse element in the sense of module
Let's look at a formula
a a − 1 ≡ 1 ( m o d c ) aa^{-1} \equiv 1~(mod ~c) aa−1≡1 (mod c)
Deformation can be obtained
a a − 1 = k c + 1 aa^{-1} = kc+1 aa−1=kc+1
transposition
a a − 1 − k c = 1 aa^{-1} -kc =1 aa−1−kc=1
It is observed that it is shaped like Euclidean equation
a x + b y = c ax+by=c ax+by=c
Therefore, it can be solved by extended Euclidean
Complete code
import java.io.*;
import java.util.*;
class Main
{
static long sum=1;
static int n;
static int[] a=new int[10];
static int[] c=new int[10];
static long x;
static long y;
static long res=0;
public static long exgcd(long a,long b)
{
if(b==0)
{
x=1;
y=0;
return a;
}
long d=exgcd(b,a%b);
long tmp=x;
x=y;
y=tmp-(a/b)*x;
return d;
}
public static void main(String[] agrs)throws IOException
{
BufferedReader reader=new BufferedReader(new InputStreamReader(System.in));
n=Integer.parseInt(reader.readLine());
for(int i=0;i<n;i++)
{
String[] param=reader.readLine().split(" ");
c[i]=Integer.parseInt(param[0]);
a[i]=Integer.parseInt(param[1]);
sum*=c[i];
}
for(int i=0;i<n;i++)
{
long m=sum/c[i];
long re=exgcd(m,c[i]);
res=(res+a[i]*m*x%sum)%sum;
}
System.out.println((res%sum+sum)%sum);// Output positive numbers
}
}
边栏推荐
- Django运行报错:Error loading MySQLdb module解决方法
- Test objects involved in safety test
- Why can't I use the @test annotation after introducing JUnit
- Base de données Advanced Learning Notes - - SQL statements
- Install MySQL for Ubuntu 20.04
- 数数字游戏
- Learning question 1:127.0.0.1 refused our visit
- Windows下安装MongDB教程、Redis教程
- Swagger, Yapi interface management service_ SE
- 项目实战-后台员工信息管理(增删改查登录与退出)
猜你喜欢

02 staff information management after the actual project

Basic use of redis

Csdn-nlp: difficulty level classification of blog posts based on skill tree and weak supervised learning (I)

Picture coloring project - deoldify

Why can't I use the @test annotation after introducing JUnit

Windows下安装MongDB教程、Redis教程

Detailed reading of stereo r-cnn paper -- Experiment: detailed explanation and result analysis

1. Mx6u learning notes (VII): bare metal development (4) -- master frequency and clock configuration

软件测试与质量学习笔记3--白盒测试

Other new features of mysql18-mysql8
随机推荐
02-项目实战之后台员工信息管理
数据库高级学习笔记--SQL语句
[recommended by bloggers] C # generate a good-looking QR code (with source code)
基于apache-jena的知识问答
Base de données Advanced Learning Notes - - SQL statements
机器学习笔记-Week02-卷积神经网络
Ansible实战系列二 _ Playbook入门
【博主推荐】C#MVC列表实现增删改查导入导出曲线功能(附源码)
NPM an error NPM err code enoent NPM err syscall open
csdn-Markdown编辑器
虚拟机Ping通主机,主机Ping不通虚拟机
Picture coloring project - deoldify
When you open the browser, you will also open mango TV, Tiktok and other websites outside the home page
[recommended by bloggers] C MVC list realizes the function of adding, deleting, modifying, checking, importing and exporting curves (with source code)
[free setup] asp Net online course selection system design and Implementation (source code +lunwen)
【博主推荐】asp.net WebService 后台数据API JSON(附源码)
Postman environment variable settings
SSM整合笔记通俗易懂版
QT creator test
Julia 1.6 1.7 common problem solving