当前位置:网站首页>AcWing 1298. Solution to Cao Chong's pig raising problem
AcWing 1298. Solution to Cao Chong's pig raising problem
2022-07-06 11:16:00 【Octopus loving monster】
AcWing 1298 . Cao Chong raises pigs Answer key
Title Description
Since Cao Chong got the elephant , Cao Cao began to think about letting his son do something , So he was sent to Zhongyuan pig farm to raise pigs , But Cao Chong was very unhappy , So in the work of careless , Once Cao Cao wanted to know the number of sows , So Cao Chong wanted to play with Cao Cao .
for instance , If there is 16 16 16 A sow , If it's built 3 3 3 A pigsty , be left over 1 1 1 There's no place for a pig to settle down ; If you build 5 5 5 A pigsty , But there is still 1 1 1 A pig has no place to go ; If you build 7 7 7 A pigsty , also 2 2 2 The head has no place to go .
As Mr. Cao's personal secretary, you should report the accurate pig number to Mr. Cao , What are you gonna do? ?
Input format
The first line contains an integer n n n, Indicates the number of times to establish a pigsty ;
Next n n n That's ok , Two integers per line a i , b i a_i,b_i ai,bi Indicates that the a i a_i ai A pigsty , Yes b i b_i bi There's no place for a pig .
You can assume that a i , a j a_i,a_j ai,aj Coprime
Output format
The output contains only one positive integer , That is, at least the number of pigs raised by Cao Chong
Data range
1 ≤ b ≤ 10 1\le b \le 10 1≤b≤10
1 ≤ b i ≤ a i ≤ 1100000 1\le b_i\le a_i\le 1100000 1≤bi≤ai≤1100000
all a i a_i ai The product of does not exceed 1 0 18 10^{18} 1018
Answer key
The test point of this question is Chinese remainder theorem
We describe the Chinese surplus in the following form
Here we give the method of calculating Chinese Remainder Theorem and prove
Calculate the product of all modules n n n
For the first i i i An equation :
a. Calculation m i = n n i m_i=\dfrac{n}{n_i} mi=nin
b. Calculation m i m_i mi In the mold n i n_i ni Inverse element in sense m i − 1 m_i^{-1} mi−1
c. Calculation c i = m i × m i − 1 c_i =m_i\times m_i^{-1} ci=mi×mi−1 ( incorrect n i n_i ni modulus )
The unique solution of the system of equations is : x = ∑ i = 1 k a i c i ( m o d n i ) x=\sum^k_{i=1}a_i~c_i (mod ~n_i) x=∑i=1kai ci(mod ni)
prove :
We can prove the result obtained by this method x x x For arbitrary i = 1 , 2 , … , k i=1,2, \dots,k i=1,2,…,k All meet x ≡ a i ( m o d n i ) x ~\equiv~ a_i~(mod~n_i) x ≡ ai (mod ni)
When i ≠ j i\neq j i=j when , Yes
m j ≡ 0 ( m o d n i ) m_j \equiv 0~(mod~ n_i) mj≡0 (mod ni)
For
c j ≡ m j ≡ 0 ( m o d n i ) c_j \equiv m_j \equiv 0 ~(mod ~n_i) cj≡mj≡0 (mod ni)
According to
c i = m i × m i − 1 ≡ 1 ( m o d n i ) c_i = m_i\times m_i^{-1}\equiv 1~(mod~n_i) ci=mi×mi−1≡1 (mod ni)
For x x x Yes
x ≡ ∑ j = 1 k a j c j ( m o d n i ) ≡ a i c i ( m o d n i ) ≡ a i × 1 ( m o d n i ) ≡ a i ( m o d n i ) x\equiv\displaystyle\sum_{j=1}^ka_j c_j ~~~~~~(mod ~n_i) \\ \equiv a_ic_i~~\qquad(mod n_i) \\ \equiv a_i\times1~~~~~~(mod n_i) \\ \equiv a_i~~~~~\qquad(mod n_i) x≡j=1∑kajcj (mod ni)≡aici (modni)≡ai×1 (modni)≡ai (modni)
Obtain evidence
Find the inverse element in the sense of module
Then the idea of this topic becomes very clear , Now the question is how Find the inverse element in the sense of module
Let's look at a formula
a a − 1 ≡ 1 ( m o d c ) aa^{-1} \equiv 1~(mod ~c) aa−1≡1 (mod c)
Deformation can be obtained
a a − 1 = k c + 1 aa^{-1} = kc+1 aa−1=kc+1
transposition
a a − 1 − k c = 1 aa^{-1} -kc =1 aa−1−kc=1
It is observed that it is shaped like Euclidean equation
a x + b y = c ax+by=c ax+by=c
Therefore, it can be solved by extended Euclidean
Complete code
import java.io.*;
import java.util.*;
class Main
{
static long sum=1;
static int n;
static int[] a=new int[10];
static int[] c=new int[10];
static long x;
static long y;
static long res=0;
public static long exgcd(long a,long b)
{
if(b==0)
{
x=1;
y=0;
return a;
}
long d=exgcd(b,a%b);
long tmp=x;
x=y;
y=tmp-(a/b)*x;
return d;
}
public static void main(String[] agrs)throws IOException
{
BufferedReader reader=new BufferedReader(new InputStreamReader(System.in));
n=Integer.parseInt(reader.readLine());
for(int i=0;i<n;i++)
{
String[] param=reader.readLine().split(" ");
c[i]=Integer.parseInt(param[0]);
a[i]=Integer.parseInt(param[1]);
sum*=c[i];
}
for(int i=0;i<n;i++)
{
long m=sum/c[i];
long re=exgcd(m,c[i]);
res=(res+a[i]*m*x%sum)%sum;
}
System.out.println((res%sum+sum)%sum);// Output positive numbers
}
}
边栏推荐
- Navicat 導出錶生成PDM文件
- Ansible practical series I_ introduction
- AcWing 1298.曹冲养猪 题解
- Test objects involved in safety test
- Request object and response object analysis
- 引入了junit为什么还是用不了@Test注解
- La table d'exportation Navicat génère un fichier PDM
- MySQL的一些随笔记录
- JDBC principle
- [Thesis Writing] how to write function description of jsp online examination system
猜你喜欢
Django运行报错:Error loading MySQLdb module解决方法
LeetCode #461 汉明距离
机器学习笔记-Week02-卷积神经网络
Redis的基础使用
Leetcode 461 Hamming distance
Summary of numpy installation problems
When you open the browser, you will also open mango TV, Tiktok and other websites outside the home page
Generate PDM file from Navicat export table
Error connecting to MySQL database: 2059 - authentication plugin 'caching_ sha2_ The solution of 'password'
QT creator specifies dependencies
随机推荐
QT creator specify editor settings
When you open the browser, you will also open mango TV, Tiktok and other websites outside the home page
The virtual machine Ping is connected to the host, and the host Ping is not connected to the virtual machine
Ubuntu 20.04 安装 MySQL
记某公司面试算法题:查找一个有序数组某个数字出现的次数
导入 SQL 时出现 Invalid default value for ‘create_time‘ 报错解决方法
數據庫高級學習筆記--SQL語句
虚拟机Ping通主机,主机Ping不通虚拟机
安全测试涉及的测试对象
AcWing 179.阶乘分解 题解
【博主推荐】C#MVC列表实现增删改查导入导出曲线功能(附源码)
NPM an error NPM err code enoent NPM err syscall open
Principes JDBC
打开浏览器的同时会在主页外同时打开芒果TV,抖音等网站
Swagger, Yapi interface management service_ SE
Knowledge Q & A based on Apache Jena
Detailed reading of stereo r-cnn paper -- Experiment: detailed explanation and result analysis
Why is MySQL still slow to query when indexing is used?
Some problems in the development of unity3d upgraded 2020 VR
AcWing 1298.曹冲养猪 题解