当前位置:网站首页>spark operator - map vs mapPartitions operator
spark operator - map vs mapPartitions operator
2022-08-05 06:11:00 【zdaiqing】
map vs mapPartitions
1.源码
1.1.map算子源码
def map[U: ClassTag](f: T => U): RDD[U] = withScope {
val cleanF = sc.clean(f)
new MapPartitionsRDD[U, T](this, (context, pid, iter) => iter.map(cleanF))
}
1.2.mapPartitions算子源码
def mapPartitions[U: ClassTag](
f: Iterator[T] => Iterator[U],
preservesPartitioning: Boolean = false): RDD[U] = withScope {
val cleanedF = sc.clean(f)
new MapPartitionsRDD(
this,
(context: TaskContext, index: Int, iter: Iterator[T]) => cleanedF(iter),
preservesPartitioning)
}
1.3.对比
相似
map算子和mapPartitionsThe bottom layer of the operator is the componentMapPartitionsRDD
区别
functional aspects
mapThe function of the function passed in by the operator,Is to process one element and return another element;
mapPartitionsThe function of the function passed in by the operator,is an iterator(一批元素)Returns another iterator after processing(一批元素);
function execution
map算子中,An iterator contains all the elements that the operator needs to process,有多少个元素,The incoming function is executed as many times as possible;
mapPartitions算子中,An iterator contains all elements in a partition,The function processes the data one iterator at a time,That is, one partition calls the function once;
1.4.Validation of execution times
代码
val lineSeq = Seq(
"hello me you her",
"hello you her",
"hello her",
"hello"
)
val rdd = sc.parallelize(lineSeq, 2)
.flatMap(_.split(" "))
println("===========mapPartitions.start==============")
rdd.mapPartitions(iter => {
println("mp+1")
iter.map(x =>
(x, 1)
)
}).collect()
println("===========map.start==============")
rdd.map(x => {
println("mp+2")
(x, 1)
}).collect()
执行结果
2.特点
map算子
有多少元素,How many times the function is executed
mapPartitions算子
有多少分区,How many times the function is executed
The function parameter is an iterator,返回的也是一个迭代器
3.使用场景分析
When performing simple element representation transformation operations,建议使用map算子,避免使用mapPartitions算子:
mapPartitionsThe function needs to return an iterator,When dealing with transformation operations on simple element representations,An intermediate cache is required to store the processing results,It is then converted to an iterator cache;这个情况下,The intermediate cache is stored in memory,If there are more elements to be processed in the iterator,容易引起OOM;
In scenarios of resource initialization overhead and batch processing in the case of large datasets,建议使用mapPartitions算子:
基于sparkCharacteristics of distributed execution operators,Each partition requires a separate resource initialization;mapPartitionsThe advantage of executing a function only once for a partition can realize that a partition needs only one resource initialization(eg:Scenarios that require database linking);
4.参考资料
Spark系列——关于 mapPartitions的误区
Spark—算子调优之MapPartitions提升Map类操作性能
Learning Spark——Spark连接Mysql、mapPartitions高效连接HBase
mapPartition
边栏推荐
- 2020,Laya最新中高级面试灵魂32问,你都知道吗?
- 【Day8】磁盘及磁盘的分区有关知识
- IP地址及子网的划分
- spark算子-coalesce算子
- Why can't I add a new hard disk to scan?How to solve?
- spark source code-RPC communication mechanism
- Spark source code-task submission process-6.1-sparkContext initialization-create spark driver side execution environment SparkEnv
- 洞察互联网大趋势,读完这篇文章你就彻底了解中文域名
- 【Day8】使用LVM扩容所涉及的命令
- 入门文档05 使用cb()指示当前任务已完成
猜你喜欢
随机推荐
“元宇宙”是个啥?都有哪些大招?
I217-V在openwrt软路由下大流量断网问题
ROS video tutorial
小度 小度 在呢!
Getting Started Documentation 10 Resource Mapping
Image compression failure problem
ACLs and NATs
spark算子-textFile算子
SSL证书提示过期或者无效,该怎么处理呢?
spark源码-任务提交流程之-1-sparkSubmit
Lua,ILRuntime, HybridCLR(wolong)/huatuo热更对比分析
IJCAI 2022|Boundary-Guided Camouflage Object Detection Model BGNet
Getting Started 11 Automatically add version numbers
Three modes of vim
【Day8】 RAID磁盘阵列
【Day5】软硬链接 文件存储,删除,目录管理命令
腾讯云云函数SCF—入门须知
Account and Permission Management
The problem of calling ds18b20 through a single bus
dsf5.0新建页面访问时重定向到首页的问题









