当前位置:网站首页>spark operator - map vs mapPartitions operator
spark operator - map vs mapPartitions operator
2022-08-05 06:11:00 【zdaiqing】
map vs mapPartitions
1.源码
1.1.map算子源码
def map[U: ClassTag](f: T => U): RDD[U] = withScope {
val cleanF = sc.clean(f)
new MapPartitionsRDD[U, T](this, (context, pid, iter) => iter.map(cleanF))
}
1.2.mapPartitions算子源码
def mapPartitions[U: ClassTag](
f: Iterator[T] => Iterator[U],
preservesPartitioning: Boolean = false): RDD[U] = withScope {
val cleanedF = sc.clean(f)
new MapPartitionsRDD(
this,
(context: TaskContext, index: Int, iter: Iterator[T]) => cleanedF(iter),
preservesPartitioning)
}
1.3.对比
相似
map算子和mapPartitionsThe bottom layer of the operator is the componentMapPartitionsRDD
区别
functional aspects
mapThe function of the function passed in by the operator,Is to process one element and return another element;
mapPartitionsThe function of the function passed in by the operator,is an iterator(一批元素)Returns another iterator after processing(一批元素);
function execution
map算子中,An iterator contains all the elements that the operator needs to process,有多少个元素,The incoming function is executed as many times as possible;
mapPartitions算子中,An iterator contains all elements in a partition,The function processes the data one iterator at a time,That is, one partition calls the function once;
1.4.Validation of execution times
代码
val lineSeq = Seq(
"hello me you her",
"hello you her",
"hello her",
"hello"
)
val rdd = sc.parallelize(lineSeq, 2)
.flatMap(_.split(" "))
println("===========mapPartitions.start==============")
rdd.mapPartitions(iter => {
println("mp+1")
iter.map(x =>
(x, 1)
)
}).collect()
println("===========map.start==============")
rdd.map(x => {
println("mp+2")
(x, 1)
}).collect()
执行结果
2.特点
map算子
有多少元素,How many times the function is executed
mapPartitions算子
有多少分区,How many times the function is executed
The function parameter is an iterator,返回的也是一个迭代器
3.使用场景分析
When performing simple element representation transformation operations,建议使用map算子,避免使用mapPartitions算子:
mapPartitionsThe function needs to return an iterator,When dealing with transformation operations on simple element representations,An intermediate cache is required to store the processing results,It is then converted to an iterator cache;这个情况下,The intermediate cache is stored in memory,If there are more elements to be processed in the iterator,容易引起OOM;
In scenarios of resource initialization overhead and batch processing in the case of large datasets,建议使用mapPartitions算子:
基于sparkCharacteristics of distributed execution operators,Each partition requires a separate resource initialization;mapPartitionsThe advantage of executing a function only once for a partition can realize that a partition needs only one resource initialization(eg:Scenarios that require database linking);
4.参考资料
Spark系列——关于 mapPartitions的误区
Spark—算子调优之MapPartitions提升Map类操作性能
Learning Spark——Spark连接Mysql、mapPartitions高效连接HBase
mapPartition
边栏推荐
猜你喜欢
Cocos Creator小游戏案例《棍子士兵》
vim的三种模式
Unity3D中的ref、out、Params三种参数的使用
Why can't I add a new hard disk to scan?How to solve?
错误类型:reflection.ReflectionException: Could not set property ‘xxx‘ of ‘class ‘xxx‘ with value ‘xxx‘
什么是全栈设计师?
硬核!Cocos开发面试必备十问,让你offer拿到手软
【Day8】使用LVM扩容所涉及的命令
Unity huatuo 革命性热更系列1.2 huatuo热更环境安装与示例项目
VRRP principle and command
随机推荐
阿里云视频点播
ROS video tutorial
入门文档12 webserve + 热更新
小度 小度 在呢!
Autoware--北科天绘rfans激光雷达使用相机&激光雷达联合标定文件验证点云图像融合效果
VRRP原理及命令
入门文档05 使用cb()指示当前任务已完成
Mongodb查询分析器解析
你要找的cocos面试答案都在这里了!
I/O性能与可靠性
Servlet跳转到JSP页面,转发和重定向
入门文档09 独立的watch
Getting Started Documentation 12 webserve + Hot Updates
Contextual non-local alignment of full-scale representations
One-arm routing and 30% switch
Why can't I add a new hard disk to scan?How to solve?
spark source code - task submission process - 5-CoarseGrainedExecutorBackend
D41_缓冲池
D39_坐标转换
spark源码-任务提交流程之-5-CoarseGrainedExecutorBackend