当前位置:网站首页>pd. to_ numeric

pd. to_ numeric

2022-07-06 03:57:00 Did HYK write the algorithm today

effect

effect : Convert parameter to numeric type .

Default return dtype by float64 or int64, Depending on the data provided . Use downcast Parameter get other dtype.

Parameters to describe

Parameters describe
args Accept scalar, list, tuple, 1-d array, or Series type
errors Yes 3 Types {‘ignore’, ‘raise’, ‘coerce’}, The default is ‘raise’
downcast {‘integer’, ‘signed’, ‘unsigned’, ‘float’} , default None, Default return float64 or int64
Be careful downcast It means down conversion

errors Explanation of parameters in

’raise’ Parameters : Invalid parsing will throw an exception

’corece’ Parameters : Set invalid resolution to NaN

‘ignore’ Parameters :** Invalid parsing will return input

downcast The meaning of parameters in

default None Just don't deal with it

’integer’ and ’signed’: The smallest signed integer dtype( minimum value np.int8)

’unsigned’: The smallest unsigned int dtype(np.uint8)

’float’: The smallest float dtype(np.float32)

Return value : If the parsing is successful , It's numbers . The return type depends on the input . If Series, Then for Series, Otherwise ndarray.

example

import pandas as pd
import numpy as np
s = pd.Series(['apple', '1.0', '2','2019-01-02',1, False,None,pd.Timestamp('2018-01-05')])

# to_numeric Is in object, Do conversion in the middle of time format , And then use astype do numeric Internal conversion of type 
pd.to_numeric(s, errors='raise') #  An error is reported when a non numeric string type is encountered ,bool Type error , The time type is converted to int
pd.to_numeric(s, errors='ignore') #  Convert only numeric strings , Other types are not converted , Include time type 
pd.to_numeric(s, errors='coerce')  #  Combine the time string with bool Type to number , Others are converted to NaN

# downcast  It can be further transformed into int perhaps float
pd.to_numeric(s) #  Default float64 type 
pd.to_numeric(s, downcast='signed') #  Convert to integer 

# astype Medium error No, `coerce` Options , So it's only suitable for `numeric` Conversion of internal types , For example, will int32 Convert to int64,int32 Convert to float32
#  Not suitable for object, Convert between time formats ,
s.astype('int32',errors='raise')
s.astype('int32',errors='ignore')  #  Yes object Invalid ,astype Only right numeric Type validation 

原网站

版权声明
本文为[Did HYK write the algorithm today]所创,转载请带上原文链接,感谢
https://yzsam.com/2022/02/202202132254415390.html