当前位置:网站首页>Pytorch RNN actual combat case_ MNIST handwriting font recognition
Pytorch RNN actual combat case_ MNIST handwriting font recognition
2022-07-06 10:25:00 【How about a song without trace】
# Model 1:Pytorch RNN Implementation process
# Load data set
# Make the data set iteratable ( Read one at a time Batch)
# Create model classes
# Initialize the model class
# Initialize loss class
# Training models
# 1. Load data set
import torch
import torch.nn as nn
import torchvision.transforms as transforms
import torchvision.datasets as datasets
import torchvision
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
# 2、 Download datasets
trainsets = datasets.MNIST(root = './data2',train = True,download = True,transform = transforms.ToTensor())
testsets = datasets.MNIST(root = './data2',train = False,transform=transforms.ToTensor())
class_names = trainsets.classes # View category labels
print(class_names)
# 3、 Look at the dataset size shape
print(trainsets.data.shape)
print(trainsets.targets.shape)
#4、 Define super parameters
BASH_SIZE = 32 # The size of data read in each batch
EPOCHS = 10 # Ten rounds of training
# Create an iteratable object for the dataset , That is to say a batch One batch Read data from
train_loader = torch.utils.data.DataLoader(dataset = trainsets, batch_size = BASH_SIZE,shuffle = True)
test_loader = torch.utils.data.DataLoader(dataset = testsets, batch_size = BASH_SIZE,shuffle = True)
# View a batch of batch The data of
images, labels = next(iter(test_loader))
print(images.shape)
#6、 Defined function , Display a batch of data
def imshow(inp, title=None):
inp = inp.numpy().transpose((1, 2, 0))
mean = np.array([0.485, 0.456, 0.406]) # mean value
std = np.array([0.229, 0.224, 0.225]) # Standard deviation
inp = std * inp + mean
inp = np.clip(inp, 0, 1) # The speed limit is limited to 0-1 Between
plt.imshow(inp)
if title is not None:
plt.title(title)
plt.pause(0.001)
# Grid display
out = torchvision.utils.make_grid(images)
imshow(out)
# 7. Definition RNN Model
class RNN_Model(nn.Module):
def __init__(self, input_dim, hidden_dim, layer_dim, output_dim):
super(RNN_Model, self).__init__()
self.hidden_dim = hidden_dim
self.layer_dim = layer_dim
self.rnn = nn.RNN(input_dim, hidden_dim, layer_dim, batch_first = True, nonlinearity='relu')
# Fully connected layer :
self.fc = nn.Linear(hidden_dim,output_dim)
def forward(self, x):
h0 = torch.zeros(self.layer_dim, x.size(0), self.hidden_dim).requires_grad_().to(device)
out, hn = self.rnn(x, h0.detach())
out = self.fc(out[:, -1, :])
return out
# 8. Initialize model
input_dim = 28 # Input dimensions
hidden_dim = 100 # Hidden dimensions
layer_dim = 2 # 2 layer RNN
output_dim = 10 # Output dimension
# Instantiate the model and pass in parameters
model = RNN_Model(input_dim, hidden_dim, layer_dim,output_dim)
# To determine if there is GPU
device = torch.device('cuda:()' if torch.cuda.is_available() else 'cpu')
#9、 Define the loss function
criterion = nn.CrossEntropyLoss()
#10、 Define optimization functions
learning_rate = 0.01
optimizer = torch.optim.SGD(model.parameters(), lr = learning_rate)
#11、 Output model parameters
length = len(list(model.parameters()))
#12、 Cycle print model parameters
for i in range(length):
print(' Parameters : %d' % (i+1))
print(list(model.parameters())[i].size())
# 13 、 model training
sequence_dim = 28 # Sequence length
loss_list = [] # preservation loss
accuracy_list = [] # preservation accuracy
iteration_list = [] # Number of save cycles
iter = 0
for epoch in range(EPOCHS):
for i, (images, labels) in enumerate(train_loader):
model.train() # Declare training
# One batch The data is converted to RNN The input dimension of
images = images.view(-1, sequence_dim, input_dim).requires_grad_().to(device)
labels = labels.to(device)
# Gradient clear ( Otherwise, it will continue to increase )
optimizer.zero_grad()
# Forward propagation
outputs = model(images)
# Calculate the loss
loss = criterion(outputs, labels)
# Back propagation
loss.backward()
# Update parameters
optimizer.step()
# The count is automatically incremented by one
iter += 1
# Model validation
if iter % 500 == 0:
model.eval() # Statement
# Calculate and verify accuracy
correct = 0.0
total = 0.0
# Iterative test set 、 get data 、 forecast
for images, labels in test_loader:
images = images.view(-1, sequence_dim, input_dim).to(device)
# Model to predict
outputs = model(images)
# Get the subscript of the maximum value of the prediction probability
predict = torch.max(outputs.data,1)[1]
# Count the size of the test set
total += labels.size(0)
# Statistical judgment / Predict the correct quantity
if torch.cuda.is_available():
correct += (predict.gpu() == labels.gpu()).sum()
else:
correct += (predict == labels).sum()
# Calculation
accuracy = (correct / total)/ 100 * 100
# preservation accuracy, loss iteration
loss_list.append(loss.data)
accuracy_list.append(accuracy)
iteration_list.append(iter)
# Print information
print("epoch : {}, Loss : {}, Accuracy : {}".format(iter, loss.item(), accuracy))
# visualization loss
plt.plot(iteration_list, loss_list)
plt.xlabel('Number of Iteration')
plt.ylabel('Loss')
plt.title('RNN')
plt.show()
# visualization accuracy
plt.plot(iteration_list, accuracy_list, color = 'r')
plt.xlabel('Number of Iteration')
plt.ylabel('Accuracy')
plt.title('RNN')
plt.savefig('RNN_mnist.png')
plt.show()
边栏推荐
- Security design verification of API interface: ticket, signature, timestamp
- Zsh configuration file
- ZABBIX introduction and installation
- Carolyn Rosé博士的社交互通演讲记录
- Windchill配置远程Oracle数据库连接
- In fact, the implementation of current limiting is not complicated
- MySQL实战优化高手07 生产经验:如何对生产环境中的数据库进行360度无死角压测?
- Southwest University: Hu hang - Analysis on learning behavior and learning effect
- Pointer learning
- Isn't there anyone who doesn't know how to write mine sweeping games in C language
猜你喜欢
A necessary soft skill for Software Test Engineers: structured thinking
Contest3145 - the 37th game of 2021 freshman individual training match_ B: Password
如何搭建接口自动化测试框架?
Nanny hand-in-hand teaches you to write Gobang in C language
Super detailed steps to implement Wechat public number H5 Message push
颜值爆表,推荐两款JSON可视化工具,配合Swagger使用真香
13 medical registration system_ [wechat login]
Security design verification of API interface: ticket, signature, timestamp
15 medical registration system_ [appointment registration]
Not registered via @EnableConfigurationProperties, marked(@ConfigurationProperties的使用)
随机推荐
MySQL实战优化高手11 从数据的增删改开始讲起,回顾一下Buffer Pool在数据库里的地位
docker MySQL解决时区问题
Contest3145 - the 37th game of 2021 freshman individual training match_ B: Password
Use of dataset of pytorch
基于Pytorch的LSTM实战160万条评论情感分类
The governor of New Jersey signed seven bills to improve gun safety
实现以form-data参数发送post请求
[paper reading notes] - cryptographic analysis of short RSA secret exponents
Carolyn Rosé博士的社交互通演讲记录
MySQL实战优化高手03 用一次数据更新流程,初步了解InnoDB存储引擎的架构设计
In fact, the implementation of current limiting is not complicated
A new understanding of RMAN retention policy recovery window
MySQL combat optimization expert 09 production experience: how to deploy a monitoring system for a database in a production environment?
Upload vulnerability
Flash operation and maintenance script (running for a long time)
安装OpenCV时遇到的几种错误
宝塔的安装和flask项目部署
Introduction tutorial of typescript (dark horse programmer of station B)
Set shell script execution error to exit automatically
Constants and pointers