当前位置:网站首页>[day 30] given an integer n, find the sum of its factors
[day 30] given an integer n, find the sum of its factors
2022-07-06 00:52:00 【Stubble】
Learning Guide
order 、 Column Preface
This column opens , The purpose is to help everyone better master learning Java
, Especially some Java Learners'
It is difficult to find systematic algorithm learning materials on the Internet to help you get started with algorithms , At the same time, if you have any questions about the contents of the column, you can add my wechat at the end of the article to give you a one-to-one explanation .
But the most important thing is to think independently , For all the content of this column , Be able to fully master , Write the code completely by yourself , There must be no problem getting started with the algorithm .
The learning of algorithm must not be short of summary , Here I recommend that you can go to University algorithm community Punch in the learned knowledge , To consolidate and review .
The only way to learn algorithms well must be Topic sea strategy , Only by accumulating a lot of practice can you practice your skills . Any topic of the column I will start with 【 Title Description 】【 Their thinking 】【 Template code 】【 Code parsing 】 Wait for four plates to explain .
One 、【 Example 1】
1、 Title Description
Given an integer n ( 1 ≤ n ≤ 1 e 9 ) n(1\leq n\leq1e9) n(1≤n≤1e9), Find the sum of its divisors , The answer is right 1 e 9 + 7 1e9+7 1e9+7 modulus
2、 Their thinking
( 1 ) (1) (1) You can find the number of factors according to the code , Yes O ( n ) O(n) O(n) and O ( n ) O(\sqrt n) O(n) Complex approach .
( 2 ) (2) (2) It can also be solved by the sum of approximations theorem , Focus on the theorem
3、 Template code
1) simple O(n) practice
import java.util.*;
public class Main {
static int mod=1000000007;
public static void main(String[] args){
Scanner sc=new Scanner(System.in);
int n=sc.nextInt();
long ans=0;
for (int i = 1; i <=n; i++) {
if (n%i==0) ans=(ans+i)%mod;
}
System.out.println(ans);
}
}
2) Optimize root n practice
import java.util.*;
public class test {
static int mod=1000000007;
public static void main(String[] args){
Scanner sc=new Scanner(System.in);
int n=sc.nextInt();
long ans=0;
for (int i = 1; i <=n/i; i++) {
if (n%i==0){
if (i!=n/i){
ans=(ans+i)%mod;
ans=(ans+n/i)%mod;
}else{
ans=(ans+i)%mod;
}
}
}
System.out.println(ans);
}
}
3) Sum of divisors theorem
import java.util.*;
public class test {
static int mod=1000000007;
public static void main(String[] args){
Scanner sc=new Scanner(System.in);
int n=sc.nextInt();
long sum=1;
for (int i = 2; i <=n/i; i++) {
if (n%i==0){
int c=0;
while (n%i==0){
c++;
n/=i;
}
long t=1;
while (c-->0) t=(t*i+1)%mod;
sum=(sum*t)%mod;
}
}
if (n>1) sum=(sum*(n+1)%mod);
System.out.println(sum);
}
}
4、 Code parsing
- ( 1 ) (1) (1) I talked about it before. , For a positive integer n n n, From the basic theorem of the formula :
n = ∏ i = 1 k p i i = p 1 a 1 × p 2 a 2 × p 3 a 3 . . . . . . p k a k ( p 1 , p 2 . . . . p k all by quality Count ) n=\prod_{i=1}^{k} p_i^{^i}=p_1^{a^1}\times p_2^{a^2}\times p_3^{a^3}......p_k^{a^k}(p_1,p_2....p_k All are prime numbers ) n=i=1∏kpii=p1a1×p2a2×p3a3......pkak(p1,p2....pk all by quality Count )
So remember n n n The sum of constraints is f ( n ) f(n) f(n), Then there are :
f ( n ) = ( p 1 0 + p 1 1 + . . . + p 1 a 1 ) ∗ ( p 2 0 + p 2 1 + . . . + p 2 a 2 ) ∗ . . . ( p k 0 + p k 1 + . . . + p k a k ) f(n)=(p_1^0+p_1^1+...+p_1^{a_1})*(p_2^0+p_2^1+...+p_2^{a_2})*...(p_k^0+p_k^1+...+p_k^{a_k}) f(n)=(p10+p11+...+p1a1)∗(p20+p21+...+p2a2)∗...(pk0+pk1+...+pkak) - ( 2 ) (2) (2) prove :
First calculate p 1 a 1 p_1^{a_1} p1a1 Sum of divisors of , It can be seen that ( p 1 0 + p 1 1 + . . . + p 1 a 1 ) (p_1^0+p_1^1+...+p_1^{a_1}) (p10+p11+...+p1a1)
Second, calculate p 2 a 2 p_2^{a_2} p2a2 Sum of divisors of , It can be seen that ( p 2 0 + p 2 1 + . . . + p 2 a 2 ) (p_2^0+p_2^1+...+p_2^{a_2}) (p20+p21+...+p2a2)
…
Finally, I worked out p k a k p_k^{a^k} pkak Sum of divisors of , It can be seen that ( p k 0 + p k 1 + . . . + p k a k ) (p_k^0+p_k^1+...+p_k^{a_k}) (pk0+pk1+...+pkak)
According to the principle of multiplication , n n n Sum of divisors of f ( n ) by : f(n) by : f(n) by :
f ( n ) = ( p 1 0 + p 1 1 + . . . + p 1 a 1 ) ∗ ( p 2 0 + p 2 1 + . . . + p 2 a 2 ) ∗ . . . ( p k 0 + p k 1 + . . . + p k a k ) f(n)=(p_1^0+p_1^1+...+p_1^{a_1})*(p_2^0+p_2^1+...+p_2^{a_2})*...(p_k^0+p_k^1+...+p_k^{a_k}) f(n)=(p10+p11+...+p1a1)∗(p20+p21+...+p2a2)∗...(pk0+pk1+...+pkak)
Two 、【 Example 2】
1、 Title Description
Given n n n A positive integer a i a_i ai, Please output the sum of divisors of the product of these numbers , The answer is right 1 0 9 + 7 10^9+7 109+7 modulus .
2、 Their thinking
( 1 ) (1) (1) On the last question , From the sum of the factors of a number to multiple numbers , But in essence, the final product is still a number .
( 2 ) (2) (2) We can n n n All numbers are decomposed by prime factors , Count the total number of occurrences of each prime factor , Finally, use the sum of divisors theorem .
3、 Template code
import java.util.HashMap;
import java.util.Map;
import java.util.Scanner;
public class Main {
static final int mod = 1000000007;
static Map<Integer, Integer> map = new HashMap<>();
static long ans = 1;
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
while (n-- > 0) {
int a = sc.nextInt();
getNums(a);
}
for (Integer a : map.keySet()) {
long sum=1;
int k=map.get(a);
while(k-->0) sum=(sum*a+1)%mod;
ans=(ans*sum)%mod;
}
System.out.print(ans);
}
// Formula for finding prime factor
static void getNums(int n) {
for (int i = 2; i <= n / i; i++) {
while (n % i == 0) {
map.put(i, map.getOrDefault(i, 0) + 1);
n /= i;
}
}
if (n > 1) map.put(n, map.getOrDefault(n, 0) + 1);
}
}
3、 ... and 、 Recommendation column
Four 、 After-school exercises
Serial number | Topic link | Difficulty rating |
---|---|---|
1 | Sum of divisors | 2 |
边栏推荐
- KDD 2022 | EEG AI helps diagnose epilepsy
- Idea远程提交spark任务到yarn集群
- 如何制作自己的机器人
- Spark SQL null value, Nan judgment and processing
- 孤勇者
- ubantu 查看cudnn和cuda的版本
- Folding and sinking sand -- weekly record of ETF
- 2022-02-13 work record -- PHP parsing rich text
- Uniapp development, packaged as H5 and deployed to the server
- 视频直播源码,实现本地存储搜索历史记录
猜你喜欢
Illustrated network: the principle behind TCP three-time handshake, why can't two-time handshake?
Fibonacci number
95后CV工程师晒出工资单,狠补了这个,真香...
毕设-基于SSM高校学生社团管理系统
ubantu 查看cudnn和cuda的版本
MIT博士论文 | 使用神经符号学习的鲁棒可靠智能系统
Idea远程提交spark任务到yarn集群
Cve-2017-11882 reappearance
激动人心,2022开放原子全球开源峰会报名火热开启
[groovy] JSON serialization (convert class objects to JSON strings | convert using jsonbuilder | convert using jsonoutput | format JSON strings for output)
随机推荐
Construction plan of Zhuhai food physical and chemical testing laboratory
KDD 2022 | EEG AI helps diagnose epilepsy
从 1.5 开始搭建一个微服务框架——调用链追踪 traceId
Installation and use of esxi
Spark SQL空值Null,NaN判断和处理
The value of applet containers
Leetcode 450 deleting nodes in a binary search tree
The third season of ape table school is about to launch, opening a new vision for developers under the wave of going to sea
[groovy] JSON serialization (jsonbuilder builder | generates JSON string with root node name | generates JSON string without root node name)
golang mqtt/stomp/nats/amqp
Promise
Programmer growth Chapter 9: precautions in real projects
VSphere implements virtual machine migration
I'm interested in watching Tiktok live beyond concert
Power Query数据格式的转换、拆分合并提取、删除重复项、删除错误、转置与反转、透视和逆透视
Cf:d. insert a progression [about the insert in the array + the nature of absolute value + greedy top-down]
测试/开发程序员的成长路线,全局思考问题的问题......
直播系统代码,自定义软键盘样式:字母、数字、标点三种切换
How spark gets columns in dataframe --column, $, column, apply
RAID disk redundancy queue