当前位置:网站首页>[day 30] given an integer n, find the sum of its factors
[day 30] given an integer n, find the sum of its factors
2022-07-06 00:52:00 【Stubble】
Learning Guide
order 、 Column Preface
This column opens , The purpose is to help everyone better master learning Java, Especially some Java Learners' It is difficult to find systematic algorithm learning materials on the Internet to help you get started with algorithms , At the same time, if you have any questions about the contents of the column, you can add my wechat at the end of the article to give you a one-to-one explanation .
But the most important thing is to think independently , For all the content of this column , Be able to fully master , Write the code completely by yourself , There must be no problem getting started with the algorithm .
The learning of algorithm must not be short of summary , Here I recommend that you can go to University algorithm community Punch in the learned knowledge , To consolidate and review .
The only way to learn algorithms well must be Topic sea strategy , Only by accumulating a lot of practice can you practice your skills . Any topic of the column I will start with 【 Title Description 】【 Their thinking 】【 Template code 】【 Code parsing 】 Wait for four plates to explain .
One 、【 Example 1】
1、 Title Description
Given an integer n ( 1 ≤ n ≤ 1 e 9 ) n(1\leq n\leq1e9) n(1≤n≤1e9), Find the sum of its divisors , The answer is right 1 e 9 + 7 1e9+7 1e9+7 modulus
2、 Their thinking
( 1 ) (1) (1) You can find the number of factors according to the code , Yes O ( n ) O(n) O(n) and O ( n ) O(\sqrt n) O(n) Complex approach .
( 2 ) (2) (2) It can also be solved by the sum of approximations theorem , Focus on the theorem
3、 Template code
1) simple O(n) practice
import java.util.*;
public class Main {
static int mod=1000000007;
public static void main(String[] args){
Scanner sc=new Scanner(System.in);
int n=sc.nextInt();
long ans=0;
for (int i = 1; i <=n; i++) {
if (n%i==0) ans=(ans+i)%mod;
}
System.out.println(ans);
}
}
2) Optimize root n practice
import java.util.*;
public class test {
static int mod=1000000007;
public static void main(String[] args){
Scanner sc=new Scanner(System.in);
int n=sc.nextInt();
long ans=0;
for (int i = 1; i <=n/i; i++) {
if (n%i==0){
if (i!=n/i){
ans=(ans+i)%mod;
ans=(ans+n/i)%mod;
}else{
ans=(ans+i)%mod;
}
}
}
System.out.println(ans);
}
}
3) Sum of divisors theorem
import java.util.*;
public class test {
static int mod=1000000007;
public static void main(String[] args){
Scanner sc=new Scanner(System.in);
int n=sc.nextInt();
long sum=1;
for (int i = 2; i <=n/i; i++) {
if (n%i==0){
int c=0;
while (n%i==0){
c++;
n/=i;
}
long t=1;
while (c-->0) t=(t*i+1)%mod;
sum=(sum*t)%mod;
}
}
if (n>1) sum=(sum*(n+1)%mod);
System.out.println(sum);
}
}
4、 Code parsing
- ( 1 ) (1) (1) I talked about it before. , For a positive integer n n n, From the basic theorem of the formula :
n = ∏ i = 1 k p i i = p 1 a 1 × p 2 a 2 × p 3 a 3 . . . . . . p k a k ( p 1 , p 2 . . . . p k all by quality Count ) n=\prod_{i=1}^{k} p_i^{^i}=p_1^{a^1}\times p_2^{a^2}\times p_3^{a^3}......p_k^{a^k}(p_1,p_2....p_k All are prime numbers ) n=i=1∏kpii=p1a1×p2a2×p3a3......pkak(p1,p2....pk all by quality Count )
So remember n n n The sum of constraints is f ( n ) f(n) f(n), Then there are :
f ( n ) = ( p 1 0 + p 1 1 + . . . + p 1 a 1 ) ∗ ( p 2 0 + p 2 1 + . . . + p 2 a 2 ) ∗ . . . ( p k 0 + p k 1 + . . . + p k a k ) f(n)=(p_1^0+p_1^1+...+p_1^{a_1})*(p_2^0+p_2^1+...+p_2^{a_2})*...(p_k^0+p_k^1+...+p_k^{a_k}) f(n)=(p10+p11+...+p1a1)∗(p20+p21+...+p2a2)∗...(pk0+pk1+...+pkak) - ( 2 ) (2) (2) prove :
First calculate p 1 a 1 p_1^{a_1} p1a1 Sum of divisors of , It can be seen that ( p 1 0 + p 1 1 + . . . + p 1 a 1 ) (p_1^0+p_1^1+...+p_1^{a_1}) (p10+p11+...+p1a1)
Second, calculate p 2 a 2 p_2^{a_2} p2a2 Sum of divisors of , It can be seen that ( p 2 0 + p 2 1 + . . . + p 2 a 2 ) (p_2^0+p_2^1+...+p_2^{a_2}) (p20+p21+...+p2a2)
…
Finally, I worked out p k a k p_k^{a^k} pkak Sum of divisors of , It can be seen that ( p k 0 + p k 1 + . . . + p k a k ) (p_k^0+p_k^1+...+p_k^{a_k}) (pk0+pk1+...+pkak)
According to the principle of multiplication , n n n Sum of divisors of f ( n ) by : f(n) by : f(n) by :
f ( n ) = ( p 1 0 + p 1 1 + . . . + p 1 a 1 ) ∗ ( p 2 0 + p 2 1 + . . . + p 2 a 2 ) ∗ . . . ( p k 0 + p k 1 + . . . + p k a k ) f(n)=(p_1^0+p_1^1+...+p_1^{a_1})*(p_2^0+p_2^1+...+p_2^{a_2})*...(p_k^0+p_k^1+...+p_k^{a_k}) f(n)=(p10+p11+...+p1a1)∗(p20+p21+...+p2a2)∗...(pk0+pk1+...+pkak)
Two 、【 Example 2】
1、 Title Description
Given n n n A positive integer a i a_i ai, Please output the sum of divisors of the product of these numbers , The answer is right 1 0 9 + 7 10^9+7 109+7 modulus .
2、 Their thinking
( 1 ) (1) (1) On the last question , From the sum of the factors of a number to multiple numbers , But in essence, the final product is still a number .
( 2 ) (2) (2) We can n n n All numbers are decomposed by prime factors , Count the total number of occurrences of each prime factor , Finally, use the sum of divisors theorem .
3、 Template code
import java.util.HashMap;
import java.util.Map;
import java.util.Scanner;
public class Main {
static final int mod = 1000000007;
static Map<Integer, Integer> map = new HashMap<>();
static long ans = 1;
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
while (n-- > 0) {
int a = sc.nextInt();
getNums(a);
}
for (Integer a : map.keySet()) {
long sum=1;
int k=map.get(a);
while(k-->0) sum=(sum*a+1)%mod;
ans=(ans*sum)%mod;
}
System.out.print(ans);
}
// Formula for finding prime factor
static void getNums(int n) {
for (int i = 2; i <= n / i; i++) {
while (n % i == 0) {
map.put(i, map.getOrDefault(i, 0) + 1);
n /= i;
}
}
if (n > 1) map.put(n, map.getOrDefault(n, 0) + 1);
}
}
3、 ... and 、 Recommendation column
Four 、 After-school exercises
| Serial number | Topic link | Difficulty rating |
|---|---|---|
| 1 | Sum of divisors | 2 |
边栏推荐
- [groovy] compile time metaprogramming (compile time method injection | method injection using buildfromspec, buildfromstring, buildfromcode)
- RAID disk redundancy queue
- The population logic of the request to read product data on the sap Spartacus home page
- The third season of ape table school is about to launch, opening a new vision for developers under the wave of going to sea
- [groovy] compile time meta programming (AST syntax tree conversion with annotations | define annotations and use groovyasttransformationclass to indicate ast conversion interface | ast conversion inte
- MIT doctoral thesis | robust and reliable intelligent system using neural symbol learning
- 《强化学习周刊》第52期:Depth-CUPRL、DistSPECTRL & Double Deep Q-Network
- Cannot resolve symbol error
- [groovy] JSON string deserialization (use jsonslurper to deserialize JSON strings | construct related classes according to the map set)
- 详细页返回列表保留原来滚动条所在位置
猜你喜欢

MCU realizes OTA online upgrade process through UART

For a deadline, the IT fellow graduated from Tsinghua suddenly died on the toilet

The population logic of the request to read product data on the sap Spartacus home page

Idea远程提交spark任务到yarn集群

MIT doctoral thesis | robust and reliable intelligent system using neural symbol learning

Arduino六足机器人

Browser reflow and redraw

How to make your own robot

Extension and application of timestamp

看抖音直播Beyond演唱会有感
随机推荐
Beginner redis
Overview of Zhuhai purification laboratory construction details
【文件IO的简单实现】
XML Configuration File
golang mqtt/stomp/nats/amqp
小程序容器可以发挥的价值
[groovy] XML serialization (use markupbuilder to generate XML data | create sub tags under tag closures | use markupbuilderhelper to add XML comments)
Ffmpeg captures RTSP images for image analysis
Cf:d. insert a progression [about the insert in the array + the nature of absolute value + greedy top-down]
The value of applet containers
Yolov5, pychar, Anaconda environment installation
Zhuhai laboratory ventilation system construction and installation instructions
数据分析思维分析方法和业务知识——分析方法(二)
DD's command
Cf:h. maximum and [bit operation practice + K operations + maximum and]
vSphere实现虚拟机迁移
Introduction of motor
Finding the nearest common ancestor of binary search tree by recursion
Keepalive component cache does not take effect
Recoverable fuse characteristic test