当前位置:网站首页>Machine Learning - Processing of Text Labels for Classification Problems (Feature Engineering)
Machine Learning - Processing of Text Labels for Classification Problems (Feature Engineering)
2022-08-04 06:19:00 【nuomi666】
Both methods convert text features into vectors composed of 01, which is convenient for computer processing, but will increase the label dimension. Each additional label classification will add a dimension.
1.sklearn.feature_extraction.DictVectorizer()
2.pandas.get_dummies
Official website addresspandas.get_dummies — pandas 1.4.2 documentation
边栏推荐
- [CV-Learning] Convolutional Neural Network Preliminary Knowledge
- 动手学深度学习_线性回归
- MNIST手写数字识别 —— 图像分析法实现二分类
- Unity ML-agents 参数设置解明
- PP-LiteSeg
- BatchNorm&&LayerNorm
- Qt日常学习
- 2020-10-19
- Transformer
- [Deep Learning 21 Days Learning Challenge] 2. Complex sample classification and recognition - convolutional neural network (CNN) clothing image classification
猜你喜欢

AIDL communication between two APPs

Copy Siege Lion 5-minute online experience MindIR format model generation

No matching function for call to ‘RCTBridgeModuleNameForClass‘

多层LSTM

Use of double pointers

【论文阅读】Anchor-Free Person Search

Attention Is All You Need(Transformer)

【Copy攻城狮日志】“一分钟”跑通MindSpore的LeNet模型

动手学深度学习_线性回归

MOOSE平台官方第二个例子分析——关于创建Kernel,求解对流扩散方程
随机推荐
中国联通、欧莱雅和钉钉都在争相打造的秘密武器?虚拟IP未来还有怎样的可能
语音驱动嘴型与面部动画生成的现状和趋势
Install dlib step pit record, error: WARNING: pip is configured with locations that require TLS/SSL
Th in thymeleaf: href use notes
DeblurGAN-v2: Deblurring (Orders-of-Magnitude) Faster and Better 图像去模糊
yolov3 data reading (2)
postgres recursive query
Qt日常学习
lstm pipeline 过程理解(输入输出)
光条中心提取方法总结(二)
The pipeline mechanism in sklearn
CSDN大礼包--高校圆桌派大礼包
[Introduction to go language] 12. Pointer
深度学习理论 —— 初始化、参数调节
YOLOV5 V6.1 详细训练方法
MOOSE平台官方第二个例子分析——关于创建Kernel,求解对流扩散方程
Dictionary feature extraction, text feature extraction.
Android connects to mysql database using okhttp
Pytorch问题总结
Pytorch语义分割理解