当前位置:网站首页>【optimtool.unconstrain】无约束优化工具箱
【optimtool.unconstrain】无约束优化工具箱
2022-07-04 20:02:00 【DeeGLMath】
【optimtool.unconstrain】无约束优化工具箱
# import packages
%matplotlib inline
import sympy as sp
import matplotlib.pyplot as plt
import optimtool as oo
def train(funcs, args, x_0):
f_list = []
title = ["gradient_descent_barzilar_borwein", "newton_CG", "newton_quasi_L_BFGS", "trust_region_steihaug_CG"]
colorlist = ["maroon", "teal", "slateblue", "orange"]
_, _, f = oo.unconstrain.gradient_descent.barzilar_borwein(funcs, args, x_0, False, True)
f_list.append(f)
_, _, f = oo.unconstrain.newton.CG(funcs, args, x_0, False, True)
f_list.append(f)
_, _, f = oo.unconstrain.newton_quasi.L_BFGS(funcs, args, x_0, False, True)
f_list.append(f)
_, _, f = oo.unconstrain.trust_region.steihaug_CG(funcs, args, x_0, False, True)
f_list.append(f)
return colorlist, f_list, title
# 可视化函数:传参接口(颜色列表,函数值列表,标题列表)
def test(colorlist, f_list, title):
handle = []
for j, z in zip(colorlist, f_list):
ln, = plt.plot([i for i in range(len(z))], z, c=j, marker='o', linestyle='dashed')
handle.append(ln)
plt.xlabel("$Iteration \ times \ (k)$")
plt.ylabel("$Objective \ function \ value: \ f(x_k)$")
plt.legend(handle, title)
plt.title("Performance Comparison")
return None
Extended Freudenstein & Roth function
f ( x ) = ∑ i = 1 n / 2 ( − 13 + x 2 i − 1 + ( ( 5 − x 2 i ) x 2 i − 2 ) x 2 i ) 2 + ( − 29 + x 2 i − 1 + ( ( x 2 i + 1 ) x 2 i − 14 ) x 2 i ) 2 , x 0 = [ 0.5 , − 2 , 0.5 , − 2 , . . . , 0.5 , − 2 ] . f(x)=\sum_{i=1}^{n/2}(-13+x_{2i-1}+((5-x_{2i})x_{2i}-2)x_{2i})^2+(-29+x_{2i-1}+((x_{2i}+1)x_{2i}-14)x_{2i})^2, x_0=[0.5, -2, 0.5, -2, ..., 0.5, -2]. f(x)=i=1∑n/2(−13+x2i−1+((5−x2i)x2i−2)x2i)2+(−29+x2i−1+((x2i+1)x2i−14)x2i)2,x0=[0.5,−2,0.5,−2,...,0.5,−2].
# make data(4 dimension)
x = sp.symbols("x1:5")
f = (-13 + x[0] + ((5 - x[1])*x[1] - 2)*x[1])**2 + \
(-29 + x[0] + ((x[1] + 1)*x[1] - 14)*x[1])**2 + \
(-13 + x[2] + ((5 - x[3])*x[3] - 2)*x[3])**2 + \
(-29 + x[2] + ((x[3] + 1)*x[3] - 14)*x[3])**2
x_0 = (1, -1, 1, -1) # Random given
# train
color, values, title = train(funcs=f, args=x, x_0=x_0)
# test
test(color, values, title)
Extended Trigonometric function:
f ( x ) = ∑ i = 1 n ( ( n − ∑ j = 1 n cos x j ) + i ( 1 − cos x i ) − sin x i ) 2 , x 0 = [ 0.2 , 0.2 , . . . , 0.2 ] f(x)=\sum_{i=1}^{n}((n-\sum_{j=1}^{n}\cos x_j)+i(1-\cos x_i)-\sin x_i)^2, x_0=[0.2, 0.2, ...,0.2] f(x)=i=1∑n((n−j=1∑ncosxj)+i(1−cosxi)−sinxi)2,x0=[0.2,0.2,...,0.2]
# make data(2 dimension)
x = sp.symbols("x1:3")
f = (2 - (sp.cos(x[0]) + sp.cos(x[1])) + (1 - sp.cos(x[0])) - sp.sin(x[0]))**2 + \
(2 - (sp.cos(x[0]) + sp.cos(x[1])) + 2 * (1 - sp.cos(x[1])) - sp.sin(x[1]))**2
x_0 = (0.1, 0.1) # Random given
# train
color, values, title = train(funcs=f, args=x, x_0=x_0)
# test
test(color, values, title)
Extended Rosenbrock function
f ( x ) = ∑ i = 1 n / 2 c ( x 2 i − x 2 i − 1 2 ) 2 + ( 1 − x 2 i − 1 ) 2 , x 0 = [ − 1.2 , 1 , . . . , − 1.2 , 1 ] . c = 100 f(x)=\sum_{i=1}^{n/2}c(x_{2i}-x_{2i-1}^2)^2+(1-x_{2i-1})^2, x_0=[-1.2, 1, ...,-1.2, 1]. c=100 f(x)=i=1∑n/2c(x2i−x2i−12)2+(1−x2i−1)2,x0=[−1.2,1,...,−1.2,1].c=100
# make data(4 dimension)
x = sp.symbols("x1:5")
f = 100 * (x[1] - x[0]**2)**2 + \
(1 - x[0])**2 + \
100 * (x[3] - x[2]**2)**2 + \
(1 - x[2])**2
x_0 = (-2, 2, -2, 2) # Random given
# train
color, values, title = train(funcs=f, args=x, x_0=x_0)
# test
test(color, values, title)
Generalized Rosenbrock function
f ( x ) = ∑ i = 1 n − 1 c ( x i + 1 − x i 2 ) 2 + ( 1 − x i ) 2 , x 0 = [ − 1.2 , 1 , . . . , − 1.2 , 1 ] , c = 100. f(x)=\sum_{i=1}^{n-1}c(x_{i+1}-x_i^2)^2+(1-x_i)^2, x_0=[-1.2, 1, ...,-1.2, 1], c=100. f(x)=i=1∑n−1c(xi+1−xi2)2+(1−xi)2,x0=[−1.2,1,...,−1.2,1],c=100.
# make data(2 dimension)
x = sp.symbols("x1:3")
f = 100 * (x[1] - x[0]**2)**2 + (1 - x[0])**2
x_0 = (-1, 0.5) # Random given
# train
color, values, title = train(funcs=f, args=x, x_0=x_0)
# test
test(color, values, title)
Extended White & Holst function
f ( x ) = ∑ i = 1 n / 2 c ( x 2 i − x 2 i − 1 3 ) 2 + ( 1 − x 2 i − 1 ) 2 , x 0 = [ − 1.2 , 1 , . . . , − 1.2 , 1 ] . c = 100 f(x)=\sum_{i=1}^{n/2}c(x_{2i}-x_{2i-1}^3)^2+(1-x_{2i-1})^2, x_0=[-1.2, 1, ...,-1.2, 1]. c=100 f(x)=i=1∑n/2c(x2i−x2i−13)2+(1−x2i−1)2,x0=[−1.2,1,...,−1.2,1].c=100
# make data(4 dimension)
x = sp.symbols("x1:5")
f = 100 * (x[1] - x[0]**3)**2 + \
(1 - x[0])**2 + \
100 * (x[3] - x[2]**3)**2 + \
(1 - x[2])**2
x_0 = (-1, 0.5, -1, 0.5) # Random given
# train
color, values, title = train(funcs=f, args=x, x_0=x_0)
# test
test(color, values, title)
Extended Penalty function
f ( x ) = ∑ i = 1 n − 1 ( x i − 1 ) 2 + ( ∑ j = 1 n x j 2 − 0.25 ) 2 , x 0 = [ 1 , 2 , . . . , n ] . f(x)=\sum_{i=1}^{n-1} (x_i-1)^2+(\sum_{j=1}^{n}x_j^2-0.25)^2, x_0=[1,2,...,n]. f(x)=i=1∑n−1(xi−1)2+(j=1∑nxj2−0.25)2,x0=[1,2,...,n].
# make data(4 dimension)
x = sp.symbols("x1:5")
f = (x[0] - 1)**2 + (x[1] - 1)**2 + (x[2] - 1)**2 + \
((x[0]**2 + x[1]**2 + x[2]**2 + x[3]**2) - 0.25)**2
x_0 = (5, 5, 5, 5) # Random given
# train
color, values, title = train(funcs=f, args=x, x_0=x_0)
# test
test(color, values, title)
Perturbed Quadratic function
f ( x ) = ∑ i = 1 n i x i 2 + 1 100 ( ∑ i = 1 n x i ) 2 , x 0 = [ 0.5 , 0.5 , . . . , 0.5 ] . f(x)=\sum_{i=1}^{n}ix_i^2+\frac{1}{100}(\sum_{i=1}^{n}x_i)^2, x_0=[0.5,0.5,...,0.5]. f(x)=i=1∑nixi2+1001(i=1∑nxi)2,x0=[0.5,0.5,...,0.5].
# make data(4 dimension)
x = sp.symbols("x1:5")
f = x[0]**2 + 2*x[1]**2 + 3*x[2]**2 + 4*x[3]**2 + \
0.01 * (x[0] + x[1] + x[2] + x[3])**2
x_0 = (1, 1, 1, 1) # Random given
# train
color, values, title = train(funcs=f, args=x, x_0=x_0)
# test
test(color, values, title)
Raydan 1 function
f ( x ) = ∑ i = 1 n i 10 ( exp x i − x i ) , x 0 = [ 1 , 1 , . . . , 1 ] . f(x)=\sum_{i=1}^{n}\frac{i}{10}(\exp{x_i}-x_i), x_0=[1,1,...,1]. f(x)=i=1∑n10i(expxi−xi),x0=[1,1,...,1].
# make data(4 dimension)
x = sp.symbols("x1:5")
f = 0.1 * (sp.exp(x[0]) - x[0]) + \
0.2 * (sp.exp(x[1]) - x[1]) + \
0.3 * (sp.exp(x[2]) - x[2]) + \
0.4 * (sp.exp(x[3]) - x[3])
x_0 = (0.5, 0.5, 0.5, 0.5) # Random given
# train
color, values, title = train(funcs=f, args=x, x_0=x_0)
# test
test(color, values, title)
Raydan 2 function
f ( x ) = ∑ i = 1 n ( exp x i − x i ) , x 0 = [ 1 , 1 , . . . , 1 ] . f(x)=\sum_{i=1}^{n}(\exp{x_i}-x_i), x_0=[1,1,...,1]. f(x)=i=1∑n(expxi−xi),x0=[1,1,...,1].
# make data(4 dimension)
x = sp.symbols("x1:5")
f = (sp.exp(x[0]) - x[0]) + \
(sp.exp(x[1]) - x[1]) + \
(sp.exp(x[2]) - x[2]) + \
(sp.exp(x[3]) - x[3])
x_0 = (2, 2, 2, 2) # Random given
# train
color, values, title = train(funcs=f, args=x, x_0=x_0)
# test
test(color, values, title)
Diagonal 1 function
f ( x ) = ∑ i = 1 n ( exp x i − i x i ) , x 0 = [ 1 / n , 1 / n , . . . , 1 / n ] . f(x)=\sum_{i=1}^{n}(\exp{x_i}-ix_i), x_0=[1/n,1/n,...,1/n]. f(x)=i=1∑n(expxi−ixi),x0=[1/n,1/n,...,1/n].
# make data(4 dimension)
x = sp.symbols("x1:5")
f = (sp.exp(x[0]) - x[0]) + \
(sp.exp(x[1]) - 2 * x[1]) + \
(sp.exp(x[2]) - 3 * x[2]) + \
(sp.exp(x[3]) - 4 * x[3])
x_0 = (0.5, 0.5, 0.5, 0.5) # Random given
# train
color, values, title = train(funcs=f, args=x, x_0=x_0)
# test
test(color, values, title)
Diagonal 2 function
f ( x ) = ∑ i = 1 n ( exp x i − x i i ) , x 0 = [ 1 / 1 , 1 / 2 , . . . , 1 / n ] . f(x)=\sum_{i=1}^{n}(\exp{x_i}-\frac{x_i}{i}), x_0=[1/1,1/2,...,1/n]. f(x)=i=1∑n(expxi−ixi),x0=[1/1,1/2,...,1/n].
# make data(4 dimension)
x = sp.symbols("x1:5")
f = (sp.exp(x[0]) - x[0]) + \
(sp.exp(x[1]) - x[1] / 2) + \
(sp.exp(x[2]) - x[2] / 3) + \
(sp.exp(x[3]) - x[3] / 4)
x_0 = (0.9, 0.6, 0.4, 0.3) # Random given
# train
color, values, title = train(funcs=f, args=x, x_0=x_0)
# test
test(color, values, title)
Diagonal 3 function
f ( x ) = ∑ i = 1 n ( exp x i − i sin ( x i ) ) , x 0 = [ 1 , 1 , . . . , 1 ] . f(x)=\sum_{i=1}^{n}(\exp{x_i}-i\sin(x_i)), x_0=[1,1,...,1]. f(x)=i=1∑n(expxi−isin(xi)),x0=[1,1,...,1].
# make data(4 dimension)
x = sp.symbols("x1:5")
f = (sp.exp(x[0]) - sp.sin(x[0])) + \
(sp.exp(x[1]) - 2 * sp.sin(x[1])) + \
(sp.exp(x[2]) - 3 * sp.sin(x[2])) + \
(sp.exp(x[3]) - 4 * sp.sin(x[3]))
x_0 = (0.5, 0.5, 0.5, 0.5) # Random given
# train
color, values, title = train(funcs=f, args=x, x_0=x_0)
# test
test(color, values, title)
Hager function
f ( x ) = ∑ i = 1 n ( exp x i − i x i ) , x 0 = [ 1 , 1 , . . . , 1 ] . f(x)=\sum_{i=1}^{n}(\exp{x_i}-\sqrt{i}x_i), x_0=[1,1,...,1]. f(x)=i=1∑n(expxi−ixi),x0=[1,1,...,1].
# make data(4 dimension)
x = sp.symbols("x1:5")
f = (sp.exp(x[0]) - x[0]) + \
(sp.exp(x[1]) - sp.sqrt(2) * x[1]) + \
(sp.exp(x[2]) - sp.sqrt(3) * x[2]) + \
(sp.exp(x[3]) - sp.sqrt(4) * x[3])
x_0 = (0.5, 0.5, 0.5, 0.5) # Random given
# train
color, values, title = train(funcs=f, args=x, x_0=x_0)
# test
test(color, values, title)
Generalized Tridiagonal 1 function
f ( x ) = ∑ i = 1 n − 1 ( x i + x i + 1 − 3 ) 2 + ( x i − x i + 1 + 1 ) 4 , x 0 = [ 2 , 2 , . . . , 2 ] . f(x)=\sum_{i=1}^{n-1}(x_i+x_{i+1}-3)^2+(x_i-x_{i+1}+1)^4, x_0=[2,2,...,2]. f(x)=i=1∑n−1(xi+xi+1−3)2+(xi−xi+1+1)4,x0=[2,2,...,2].
# make data(3 dimension)
x = sp.symbols("x1:4")
f = (x[0] + x[1] - 3)**2 + (x[0] - x[1] + 1)**4 + \
(x[1] + x[2] - 3)**2 + (x[1] - x[2] + 1)**4
x_0 = (1, 1, 1) # Random given
# train
color, values, title = train(funcs=f, args=x, x_0=x_0)
# test
test(color, values, title)
Extended Tridiagonal 1 function:
f ( x ) = ∑ i = 1 n / 2 ( x 2 i − 1 + x 2 i − 3 ) 2 + ( x 2 i − 1 − x 2 i + 1 ) 4 , x 0 = [ 2 , 2 , . . . , 2 ] . f(x)=\sum_{i=1}^{n/2}(x_{2i-1}+x_{2i}-3)^2+(x_{2i-1}-x_{2i}+1)^4, x_0=[2,2,...,2]. f(x)=i=1∑n/2(x2i−1+x2i−3)2+(x2i−1−x2i+1)4,x0=[2,2,...,2].
# make data(2 dimension)
x = sp.symbols("x1:3")
f = (x[0] + x[1] - 3)**2 + (x[0] - x[1] + 1)**4
x_0 = (1, 1) # Random given
# train
color, values, title = train(funcs=f, args=x, x_0=x_0)
# test
test(color, values, title)
Extended TET function : (Three exponential terms)
f ( x ) = ∑ i = 1 n / 2 ( ( exp x 2 i − 1 + 3 x 2 i − 0.1 ) + exp ( x 2 i − 1 − 3 x 2 i − 0.1 ) + exp ( − x 2 i − 1 − 0.1 ) ) , x 0 = [ 0.1 , 0.1 , . . . , 0.1 ] . f(x)=\sum_{i=1}^{n/2}((\exp x_{2i-1} + 3x_{2i} - 0.1) + \exp (x_{2i-1} - 3x_{2i} - 0.1) + \exp (-x_{2i-1}-0.1)), x_0=[0.1,0.1,...,0.1]. f(x)=i=1∑n/2((expx2i−1+3x2i−0.1)+exp(x2i−1−3x2i−0.1)+exp(−x2i−1−0.1)),x0=[0.1,0.1,...,0.1].
# make data(4 dimension)
x = sp.symbols("x1:5")
f = sp.exp(x[0] + 3*x[1] - 0.1) + sp.exp(x[0] - 3*x[1] - 0.1) + sp.exp(-x[0] - 0.1) + \
sp.exp(x[2] + 3*x[3] - 0.1) + sp.exp(x[2] - 3*x[3] - 0.1) + sp.exp(-x[2] - 0.1)
x_0 = (0.2, 0.2, 0.2, 0.2) # Random given
# train
color, values, title = train(funcs=f, args=x, x_0=x_0)
# test
test(color, values, title)
边栏推荐
猜你喜欢
工厂从自动化到数字孪生,图扑能干什么?
What are the functional modules of RFID warehouse management system solution
PS竖排英文和数字文字怎么改变方向(变竖直显示)
PS vertical English and digital text how to change direction (vertical display)
Sword finger offer II 80-100 (continuous update)
Summary of the mistakes in the use of qpainter in QT gobang man-machine game
Foxit pdf editor v10.1.8 green version
Flet tutorial 06 basic introduction to textbutton (tutorial includes source code)
See how Tencent does interface automation testing
From automation to digital twins, what can Tupo do?
随机推荐
LeetCode 8. String conversion integer (ATOI)
What if win11u disk refuses access? An effective solution to win11u disk access denial
HMS Core 机器学习服务
奏响青春的乐章
How does the computer save web pages to the desktop for use
Pytorch---使用Pytorch实现LinkNet进行语义分割
【1200. 最小绝对差】
软件开发过中的采购
Flet tutorial 04 basic introduction to filledtonalbutton (tutorial includes source code)
Hash quiz game system development how to develop hash quiz game system development (multiple cases)
[solution] paddlepaddle 2 X call static graph mode
What should I do if my computer sharing printer refuses access
What if the win11 shared file cannot be opened? The solution of win11 shared file cannot be opened
网件r7000梅林系统虚拟内存创建失败,提示USB磁盘读写速度不满足要求解决办法,有需要创建虚拟内存吗??
js 3D爆炸碎片图片切换js特效
What if the WiFi of win11 system always drops? Solution of WiFi total drop in win11 system
Qt五子棋人机对战画棋子之QPainter的使用误区总结
二叉树的四种遍历方式以及中序后序、前序中序、前序后序、层序创建二叉树【专为力扣刷题而打造】
[micro service SCG] use of predict
Cdga | six principles that data governance has to adhere to