当前位置:网站首页>Pytorch---使用Pytorch实现LinkNet进行语义分割
Pytorch---使用Pytorch实现LinkNet进行语义分割
2022-07-04 19:42:00 【水哥很水】
一、代码中的数据集可以通过以下链接获取
二、代码运行环境
Pytorch-gpu==1.10.1
Python==3.8
三、数据集处理代码如下所示
import os
import torch
from torch.utils import data
from torchvision import transforms
from PIL import Image
import matplotlib.pyplot as plt
from torchvision.utils import draw_segmentation_masks
class MaskDataset(data.Dataset):
def __init__(self, image_paths, mask_paths, transform):
super(MaskDataset, self).__init__()
self.image_paths = image_paths
self.mask_paths = mask_paths
self.transform = transform
def __getitem__(self, index):
image_path = self.image_paths[index]
label_path = self.mask_paths[index]
pil_img = Image.open(image_path)
pil_img = pil_img.convert('RGB')
img_tensor = self.transform(pil_img)
pil_label = Image.open(label_path)
label_tensor = self.transform(pil_label)
label_tensor[label_tensor > 0] = 1
label_tensor = torch.squeeze(input=label_tensor).type(torch.LongTensor)
return img_tensor, label_tensor
def __len__(self):
return len(self.mask_paths)
def load_data():
# DATASET_PATH = r'/home/akita/hk'
DATASET_PATH = r'/Users/leeakita/Desktop/hk'
TRAIN_DATASET_PATH = os.path.join(DATASET_PATH, 'training')
TEST_DATASET_PATH = os.path.join(DATASET_PATH, 'testing')
train_file_names = os.listdir(TRAIN_DATASET_PATH)
test_file_names = os.listdir(TEST_DATASET_PATH)
train_image_names = [name for name in train_file_names if
'matte' in name and name.split('_')[0] + '.png' in train_file_names]
train_image_paths = [os.path.join(TRAIN_DATASET_PATH, name.split('_')[0] + '.png') for name in
train_image_names]
train_label_paths = [os.path.join(TRAIN_DATASET_PATH, name) for name in train_image_names]
test_image_names = [name for name in test_file_names if
'matte' in name and name.split('_')[0] + '.png' in test_file_names]
test_image_paths = [os.path.join(TEST_DATASET_PATH, name.split('_')[0] + '.png') for name in test_image_names]
test_label_paths = [os.path.join(TEST_DATASET_PATH, name) for name in test_image_names]
transform = transforms.Compose([
transforms.Resize((256, 256)),
transforms.ToTensor()
])
BATCH_SIZE = 8
train_ds = MaskDataset(image_paths=train_image_paths, mask_paths=train_label_paths, transform=transform)
test_ds = MaskDataset(image_paths=test_image_paths, mask_paths=test_label_paths, transform=transform)
train_dl = data.DataLoader(dataset=train_ds, batch_size=BATCH_SIZE, shuffle=True)
test_dl = data.DataLoader(dataset=test_ds, batch_size=BATCH_SIZE)
return train_dl, test_dl
if __name__ == '__main__':
train_my, test_my = load_data()
images, labels = next(iter(train_my))
indexx = 5
images = images[indexx]
labels = labels[indexx]
labels = torch.unsqueeze(input=labels, dim=0)
result = draw_segmentation_masks(image=torch.as_tensor(data=images * 255, dtype=torch.uint8),
masks=torch.as_tensor(data=labels, dtype=torch.bool),
alpha=0.6, colors=['red'])
plt.imshow(result.permute(1, 2, 0).numpy())
plt.show()
四、模型的构建代码如下所示
from torch import nn
import torch
class ConvBlock(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size=3, stride=1, padding=1):
super(ConvBlock, self).__init__()
self.conv_bn_relu = nn.Sequential(
nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=stride,
padding=padding),
nn.BatchNorm2d(num_features=out_channels),
nn.ReLU(inplace=True)
)
def forward(self, x):
return self.conv_bn_relu(x)
class DecodeConvBlock(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size=3, stride=2, padding=1, out_padding=1):
super(DecodeConvBlock, self).__init__()
self.de_conv = nn.ConvTranspose2d(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size,
stride=stride, padding=padding, output_padding=out_padding)
self.bn = nn.BatchNorm2d(num_features=out_channels)
def forward(self, x, is_act=True):
x = self.de_conv(x)
if is_act:
x = torch.relu(self.bn(x))
return x
class EncodeBlock(nn.Module):
def __init__(self, in_channels, out_channels):
super(EncodeBlock, self).__init__()
self.conv1 = ConvBlock(in_channels=in_channels, out_channels=out_channels, stride=2)
self.conv2 = ConvBlock(in_channels=out_channels, out_channels=out_channels)
self.conv3 = ConvBlock(in_channels=out_channels, out_channels=out_channels)
self.conv4 = ConvBlock(in_channels=out_channels, out_channels=out_channels)
self.short_cut = ConvBlock(in_channels=in_channels, out_channels=out_channels, stride=2)
def forward(self, x):
out1 = self.conv1(x)
out1 = self.conv2(out1)
short_cut = self.short_cut(x)
out2 = self.conv3(out1 + short_cut)
out2 = self.conv4(out2)
return out1 + out2
class DecodeBlock(nn.Module):
def __init__(self, in_channels, out_channels):
super(DecodeBlock, self).__init__()
self.conv1 = ConvBlock(in_channels=in_channels, out_channels=in_channels // 4, kernel_size=1, padding=0)
self.de_conv = DecodeConvBlock(in_channels=in_channels // 4, out_channels=in_channels // 4)
self.conv3 = ConvBlock(in_channels=in_channels // 4, out_channels=out_channels, kernel_size=1, padding=0)
def forward(self, x):
x = self.conv1(x)
x = self.de_conv(x)
x = self.conv3(x)
return x
class LinkNet(nn.Module):
def __init__(self):
super(LinkNet, self).__init__()
self.init_conv = ConvBlock(in_channels=3, out_channels=64, stride=2, kernel_size=7, padding=3)
self.init_maxpool = nn.MaxPool2d(kernel_size=(2, 2))
self.encode_1 = EncodeBlock(in_channels=64, out_channels=64)
self.encode_2 = EncodeBlock(in_channels=64, out_channels=128)
self.encode_3 = EncodeBlock(in_channels=128, out_channels=256)
self.encode_4 = EncodeBlock(in_channels=256, out_channels=512)
self.decode_4 = DecodeBlock(in_channels=512, out_channels=256)
self.decode_3 = DecodeBlock(in_channels=256, out_channels=128)
self.decode_2 = DecodeBlock(in_channels=128, out_channels=64)
self.decode_1 = DecodeBlock(in_channels=64, out_channels=64)
self.deconv_out1 = DecodeConvBlock(in_channels=64, out_channels=32)
self.conv_out = ConvBlock(in_channels=32, out_channels=32)
self.deconv_out2 = DecodeConvBlock(in_channels=32, out_channels=2, kernel_size=2, padding=0, out_padding=0)
def forward(self, x):
x = self.init_conv(x)
x = self.init_maxpool(x)
e1 = self.encode_1(x)
e2 = self.encode_2(e1)
e3 = self.encode_3(e2)
e4 = self.encode_4(e3)
d4 = self.decode_4(e4)
d3 = self.decode_3(d4 + e3)
d2 = self.decode_2(d3 + e2)
d1 = self.decode_1(d2 + e1)
f1 = self.deconv_out1(d1)
f2 = self.conv_out(f1)
f3 = self.deconv_out2(f2)
return f3
五、模型的训练代码如下所示
import torch
from data_loader import load_data
from model_loader import LinkNet
from torch import nn
from torch import optim
import tqdm
import os
# 环境变量的配置
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# 加载数据
train_dl, test_dl = load_data()
# 加载模型
model = LinkNet()
model = model.to(device=device)
# 训练的相关配置
loss_fn = nn.CrossEntropyLoss()
optimizer = optim.Adam(params=model.parameters(), lr=0.001)
lr_scheduler = optim.lr_scheduler.StepLR(optimizer=optimizer, step_size=5, gamma=0.7)
# 开始进行训练
for epoch in range(100):
train_tqdm = tqdm.tqdm(iterable=train_dl, total=len(train_dl))
train_tqdm.set_description_str('Train epoch: {:3d}'.format(epoch))
train_loss_sum = torch.tensor(data=[], dtype=torch.float, device=device)
train_iou_sum = torch.tensor(data=[], dtype=torch.float, device=device)
for train_images, train_labels in train_tqdm:
train_images, train_labels = train_images.to(device), train_labels.to(device)
pred = model(train_images)
loss = loss_fn(pred, train_labels)
optimizer.zero_grad()
loss.backward()
optimizer.step()
with torch.no_grad():
intersection = torch.logical_and(input=train_labels, other=torch.argmax(input=pred, dim=1))
union = torch.logical_or(input=train_labels, other=torch.argmax(input=pred, dim=1))
batch_iou = torch.true_divide(torch.sum(intersection), torch.sum(union))
train_iou_sum = torch.cat([train_iou_sum, torch.unsqueeze(input=batch_iou, dim=-1)], dim=-1)
train_loss_sum = torch.cat([train_loss_sum, torch.unsqueeze(input=loss, dim=-1)], dim=-1)
train_tqdm.set_postfix({
'train loss': train_loss_sum.mean().item(),
'train iou': train_iou_sum.mean().item()
})
train_tqdm.close()
lr_scheduler.step()
with torch.no_grad():
test_tqdm = tqdm.tqdm(iterable=test_dl, total=len(test_dl))
test_tqdm.set_description_str('Test epoch: {:3d}'.format(epoch))
test_loss_sum = torch.tensor(data=[], dtype=torch.float, device=device)
test_iou_sum = torch.tensor(data=[], dtype=torch.float, device=device)
for test_images, test_labels in test_tqdm:
test_images, test_labels = test_images.to(device), test_labels.to(device)
test_pred = model(test_images)
test_loss = loss_fn(test_pred.softmax(dim=1), test_labels)
test_intersection = torch.logical_and(input=test_labels, other=torch.argmax(input=test_pred, dim=1))
test_union = torch.logical_or(input=test_labels, other=torch.argmax(input=test_pred, dim=1))
test_batch_iou = torch.true_divide(torch.sum(test_intersection), torch.sum(test_union))
test_iou_sum = torch.cat([test_iou_sum, torch.unsqueeze(input=test_batch_iou, dim=-1)], dim=-1)
test_loss_sum = torch.cat([test_loss_sum, torch.unsqueeze(input=test_loss, dim=-1)], dim=-1)
test_tqdm.set_postfix({
'test loss': test_loss_sum.mean().item(),
'test iou': test_iou_sum.mean().item()
})
test_tqdm.close()
# 模型的保存
if not os.path.exists(os.path.join('model_data')):
os.mkdir(os.path.join('model_data'))
torch.save(model.state_dict(), os.path.join('model_data', 'model.pth'))
六、模型的预测代码如下所示
import torch
import os
import matplotlib.pyplot as plt
from torchvision.utils import draw_segmentation_masks
from data_loader import load_data
from model_loader import LinkNet
# 数据的加载
train_dl, test_dl = load_data()
# 模型的加载
model = LinkNet()
model_state_dict = torch.load(os.path.join('model_data', 'model.pth'), map_location='cpu')
model.load_state_dict(model_state_dict)
# 开始进行预测
images, labels = next(iter(test_dl))
index = 2
with torch.no_grad():
pred = model(images)
pred = torch.argmax(input=pred, dim=1)
result = draw_segmentation_masks(image=torch.as_tensor(data=images[index] * 255, dtype=torch.uint8),
masks=torch.as_tensor(data=pred[index], dtype=torch.bool),
alpha=0.8, colors=['red'])
plt.figure(figsize=(8, 8), dpi=500)
plt.axis('off')
plt.imshow(result.permute(1, 2, 0))
plt.savefig('result.png')
plt.show()
七、代码的运行结果如下所示

边栏推荐
- Practice examples to understand JS strong cache negotiation cache
- 接口设计时的一些建议
- 二叉树的四种遍历方式以及中序后序、前序中序、前序后序、层序创建二叉树【专为力扣刷题而打造】
- Quelques suggestions pour la conception de l'interface
- How to solve the problem that win11 cannot write the value to the registry key?
- hash 表的概念及应用
- Practical examples of node strong cache and negotiation cache
- 卷积神经网络在深度学习中新发展的5篇论文推荐
- Idea plug-in
- LeetCode 871. Minimum refueling times
猜你喜欢

Win11共享文件打不开怎么办?Win11共享文件打不开的解决方法

From automation to digital twins, what can Tupo do?

强化学习-学习笔记2 | 价值学习

FS8B711S14电动红酒开瓶器单片机IC方案开发专用集成IC

What should I do if my computer sharing printer refuses access

Related concepts of federal learning and motivation (1)
Practical examples of node strong cache and negotiation cache

Ten years' experience of byte test engineer directly hits the pain point of UI automation test

Win11系统wifi总掉线怎么办?Win11系统wifi总掉线的解决方法

电脑页面不能全屏怎么办?Win11页面不能全屏的解决方法
随机推荐
科普达人丨一文看懂阿里云的秘密武器“神龙架构”
接口設計時的一些建議
JS closure
Flet tutorial 07 basic introduction to popupmenubutton (tutorial includes source code)
Flet tutorial 04 basic introduction to filledtonalbutton (tutorial includes source code)
哈希(Hash)竞猜游戏系统开发功能分析及源码
Stack: how to realize the judgment of valid brackets?
Flet教程之 06 TextButton基础入门(教程含源码)
MySQL - database query - use of aggregate function, aggregate query, grouping query
ICML 2022 | Meta提出鲁棒的多目标贝叶斯优化方法,有效应对输入噪声
word中插入图片后,图片上方有一空行,且删除后布局变乱
易周金融 | Q1保险行业活跃人数8688.67万人 19家支付机构牌照被注销
BFC interview Brief
Automatic generation of interface automatic test cases by actual operation
记录线上bug解决list(未完待续7/4)
Fleet tutorial 08 introduction to AppBar toolbar Basics (tutorial includes source code)
测试员的算法面试题-找众数
电脑页面不能全屏怎么办?Win11页面不能全屏的解决方法
Flet教程之 04 FilledTonalButton基础入门(教程含源码)
Automatic insertion of captions in word