当前位置:网站首页>20220701 barbarat lemma proof
20220701 barbarat lemma proof
2022-07-04 08:48:00 【Can you eat spicy food】
(Barbalat lemma )
If differentiable function f ( t ) f(t) f(t), When t → ∞ t \rightarrow \infty t→∞ There is a finite limit , And f ˙ ( t ) \dot{f}(t) f˙(t) Uniformly continuous , So when t → ∞ t \rightarrow \infty t→∞ when , f ˙ ( t ) → 0 \dot{f}(t) \rightarrow 0 f˙(t)→0.
prove ( Reduction to absurdity ):
Suppose that t → ∞ t \rightarrow \infty t→∞ when , f ˙ ( t ) → 0 \dot{f}(t) \rightarrow 0 f˙(t)→0 Don't set up , Then there is an increasing infinite sequence { t n } n ∈ N \{t_n\}_{n\in\mathbb{N}} { tn}n∈N bring (1) When n → ∞ n \rightarrow \infty n→∞ Yes t n → ∞ t_n \rightarrow \infty tn→∞ ;(2) ∣ f ˙ ( t n ) ∣ ⩾ ϵ > 0 |\dot{f}(t_n) | \geqslant \epsilon>0 ∣f˙(tn)∣⩾ϵ>0 For all { t n } \{t_n\} { tn}.
consider f ˙ ( t ) \dot{f}(t) f˙(t) Consistent continuity of , according to ϵ − δ \epsilon-\delta ϵ−δ theory , There is a certain ϵ > 0 \epsilon>0 ϵ>0 , Such that for all n ∈ N n\in\mathbb{N} n∈N and all t ∈ R t \in \mathbb{R} t∈R, When
∣ t n − t ∣ ⩽ δ |t_n -t|\leqslant\delta ∣tn−t∣⩽δ Then there are ∣ f ˙ ( t n ) − f ˙ ( t ) ∣ ≤ ε 2 \left|\dot{f}\left(t_{n}\right)-\dot{f}(t)\right| \leq \frac{\varepsilon}{2} ∣∣∣f˙(tn)−f˙(t)∣∣∣≤2ε
therefore , For all t ∈ [ t n , t n + δ ] t\in[t_n,t_n+\delta] t∈[tn,tn+δ], And all n ∈ N n\in\mathbb{N} n∈N, Yes ∣ f ˙ ( t ) ∣ = ∣ f ˙ ( t n ) − ( f ˙ ( t n ) − f ˙ ( t ) ) ∣ ⩾ ∣ f ˙ ( t n ) ∣ − ∣ f ˙ ( t n ) − f ˙ ( t ) ∣ ⩾ ε − ε 2 = ε 2 \begin{aligned} |\dot{f}(t)| =\left|\dot{f}\left(t_{n}\right)-\left(\dot{f}\left(t_{n}\right)-\dot{f}(t)\right)\right| \geqslant \left|\dot{f}\left(t_{n}\right)\right|-\left|\dot{f}\left(t_{n}\right)-\dot{f}(t)\right| \geqslant \varepsilon-\frac{\varepsilon}{2}=\frac{\varepsilon}{2} \end{aligned} ∣f˙(t)∣=∣∣∣f˙(tn)−(f˙(tn)−f˙(t))∣∣∣⩾∣∣∣f˙(tn)∣∣∣−∣∣∣f˙(tn)−f˙(t)∣∣∣⩾ε−2ε=2ε therefore , For all n ∈ N n\in\mathbb{N} n∈N, Yes ∣ ∫ 0 t n + δ f ˙ ( t ) d t − ∫ 0 t n f ˙ ( t ) d t ∣ = ∣ ∫ t n t n + δ f ˙ ( t ) d t ∣ = ∫ t n t n + δ ∣ f ˙ ( t ) ∣ d t ≥ ε δ 2 > 0 \left|\int_{0}^{t_{n}+\delta} \dot{f}(t) d t-\int_{0}^{t_{n}} \dot{f}(t) d t\right|=\left|\int_{t_{n}}^{t_{n}+\delta} \dot{f}(t) d t\right|=\int_{t_{n}}^{t_{n}+\delta}|\dot{f}(t)| d t \geq \frac{\varepsilon \delta}{2}>0 ∣∣∣∣∣∫0tn+δf˙(t)dt−∫0tnf˙(t)dt∣∣∣∣∣=∣∣∣∣∣∫tntn+δf˙(t)dt∣∣∣∣∣=∫tntn+δ∣f˙(t)∣dt≥2εδ>0
According to the hypothesis , ∫ 0 ∞ f ˙ ( t ) d t < β \int_0^\infty \dot f(t) dt<\beta ∫0∞f˙(t)dt<β There is , therefore , When n → ∞ n\rightarrow \infty n→∞, ∣ ∫ 0 t n + δ f ˙ ( t ) d t − ∫ 0 t n f ˙ ( t ) d t ∣ → 0 \left|\int_{0}^{t_{n}+\delta} \dot{f}(t) d t-\int_{0}^{t_{n}} \dot{f}(t) d t\right| \rightarrow 0 ∣∣∣∣∣∫0tn+δf˙(t)dt−∫0tnf˙(t)dt∣∣∣∣∣→0, Conflict with the above formula , Therefore, the counter evidence method can prove , When t → ∞ t \rightarrow \infty t→∞ when , f ˙ ( t ) → 0 \dot{f}(t) \rightarrow 0 f˙(t)→0.
边栏推荐
- User login function: simple but difficult
- ctfshow web255 web 256 web257
- What exactly is DAAS data as a service? Don't be misled by other DAAS concepts
- 上周热点回顾(6.27-7.3)
- Collections in Scala
- deno debugger
- ArcGIS应用(二十二)Arcmap加载激光雷达las格式数据
- Flutter integrated amap_ flutter_ location
- Turn: excellent managers focus not on mistakes, but on advantages
- Awk from entry to earth (12) awk can also write scripts to replace the shell
猜你喜欢
没有Kubernetes怎么玩Dapr?
微服务入门:Gateway网关
AI Winter Olympics | is the future coming? Enter the entrance of the meta universe - virtual digital human
Display Chinese characters according to numbers
DM8 uses different databases to archive and recover after multiple failures
es6总结
What if the wireless network connection of the laptop is unavailable
DM8 database recovery based on point in time
C语言-入门-基础-语法-[标识符,关键字,分号,空格,注释,输入和输出](三)
L1 regularization and L2 regularization
随机推荐
Four essential material websites for we media people to help you easily create popular models
User login function: simple but difficult
A method for detecting outliers of data
Awk from entry to earth (12) awk can also write scripts to replace the shell
How to choose solid state hard disk and mechanical hard disk in computer
Educational Codeforces Round 115 (Rated for Div. 2)
没有Kubernetes怎么玩Dapr?
Group programming ladder race - exercise set l1-006 continuity factor
manjaro安装微信
awk从入门到入土(12)awk也可以写脚本,替代shell
Codeforces Round #750 (Div. 2)(A,B,C,D,F1)
FOC控制
What exactly is DAAS data as a service? Don't be misled by other DAAS concepts
DM database password policy and login restriction settings
Awk from getting started to digging in (11) detailed explanation of awk getline function
How to re enable local connection when the network of laptop is disabled
Use Alibaba cloud NPM image acceleration
L1 regularization and L2 regularization
FOC control
C语言-入门-基础-语法-[变量,常亮,作用域](五)