当前位置:网站首页>Cmu15445 (fall 2019) project 2 - hash table details

Cmu15445 (fall 2019) project 2 - hash table details

2022-07-07 11:42:00 One yo

Preface

This experiment requires the implementation of a hash table based on linear detection , But different from the hash table directly in memory , The experiment assumes that the hash table is very large , Unable to put the whole into memory , Therefore, we need to split the hash table , Put multiple key value pairs in one Page in , Then, it is combined with an experiment Buffer Pool Manager Eat together . The approximate structure of the hash table is shown in the following figure :

 Hash table structure

Here is how to implement a thread safe hash table .

Code implementation

Page Layout

As can be seen from the above figure , Multiple key value pairs are placed in Page Inside , As Page The data of is stored on disk . In order to better organize and manage these key value pairs , Experimental task 1 requires us to implement two classes :HashTableHeaderPage and HashTableBlockPage,HashTableHeaderPage preserved block index To page id And other hash table metadata , There is only one hash table HashTableHeaderPage, and HashTableBlockPage There can be multiple .

Hash Table Header Page

HashTableHeaderPage There are several fields :

Field size describe
lsn_4 bytesLog sequence number (Used in Project 4)
size_4 bytesNumber of Key & Value pairs the hash table can hold
page_id_4 bytesSelf Page Id
next_ind_4 bytesThe next index to add a new entry to block_page_ids_
block_page_ids_4080 bytesArray of block page_id_t

These fields total 4096 byte , It happens to be a Page Size , stay src/include/common/config.h You can modify PAGE_SIZE Size . The implementation code of this class is as follows :

namespace bustub {
page_id_t HashTableHeaderPage::GetBlockPageId(size_t index) {
  assert(index < next_ind_);
  return block_page_ids_[index];
}

page_id_t HashTableHeaderPage::GetPageId() const { return page_id_; }

void HashTableHeaderPage::SetPageId(bustub::page_id_t page_id) { page_id_ = page_id; }

lsn_t HashTableHeaderPage::GetLSN() const { return lsn_; }

void HashTableHeaderPage::SetLSN(lsn_t lsn) { lsn_ = lsn; }

void HashTableHeaderPage::AddBlockPageId(page_id_t page_id) { block_page_ids_[next_ind_++] = page_id; }

size_t HashTableHeaderPage::NumBlocks() { return next_ind_; }

void HashTableHeaderPage::SetSize(size_t size) { size_ = size; }

size_t HashTableHeaderPage::GetSize() const { return size_; }

}  // namespace bustub

Hash Table Block Page

HashTableBlockPage Contains multiple slot, Used to save key-value pairs , So this class defines the query 、 Functions that insert and delete key value pairs . To track each slot Usage situation , This class contains the following three data members :

  • occupied_ : The first i Location 1 Express Page Of the i individual slot Key value pairs are stored on the or key value pairs were previously stored but then deleted ( Play the role of a tombstone )
  • readable_ : The first i Location 1 Express Page Of the i individual slot Key value pairs are stored on
  • array_ : An array used to hold key value pairs

The size of each key value pair is sizeof(std::pair<KeyType, ValueType>) byte ( Write it down as PS), Each key value pair corresponds to two bit(occupied and readable) namely 1/4 Bytes , So a Page Can save up to BLOCK_ARRAY_SIZE = PAGE_SIZE / (PS + 1/4) Key value pairs , each Page Yes BLOCK_ARRAY_SIZE individual slot.

because occupied_ and readable_ Is defined as char Array , So we need two auxiliary functions GetBit and SetBit To visit No i Bit of bit .

namespace bustub {
/**
 * Store indexed key and and value together within block page. Supports
 * non-unique keys.
 *
 * Block page format (keys are stored in order):
 *  ----------------------------------------------------------------
 * | KEY(1) + VALUE(1) | KEY(2) + VALUE(2) | ... | KEY(n) + VALUE(n)
 *  ----------------------------------------------------------------
 *
 *  Here '+' means concatenation.
 *
 */
template <typename KeyType, typename ValueType, typename KeyComparator>
class HashTableBlockPage {
 public:
  // Delete all constructor / destructor to ensure memory safety
  HashTableBlockPage() = delete;

  KeyType KeyAt(slot_offset_t bucket_ind) const;
  ValueType ValueAt(slot_offset_t bucket_ind) const;
  bool Insert(slot_offset_t bucket_ind, const KeyType &key, const ValueType &value);
  void Remove(slot_offset_t bucket_ind);
  bool IsOccupied(slot_offset_t bucket_ind) const;
  bool IsReadable(slot_offset_t bucket_ind) const;

 private:
  bool GetBit(const std::atomic_char *array, slot_offset_t bucket_ind) const;
  void SetBit(std::atomic_char *array, slot_offset_t bucket_ind, bool value);

  std::atomic_char occupied_[(BLOCK_ARRAY_SIZE - 1) / 8 + 1];

  // 0 if tombstone/brand new (never occupied), 1 otherwise.
  std::atomic_char readable_[(BLOCK_ARRAY_SIZE - 1) / 8 + 1];
  MappingType array_[0];
};

}  // namespace bustub

The implementation code is as follows :

namespace bustub {

template <typename KeyType, typename ValueType, typename KeyComparator>
KeyType HASH_TABLE_BLOCK_TYPE::KeyAt(slot_offset_t bucket_ind) const {
  return array_[bucket_ind].first;
}

template <typename KeyType, typename ValueType, typename KeyComparator>
ValueType HASH_TABLE_BLOCK_TYPE::ValueAt(slot_offset_t bucket_ind) const {
  return array_[bucket_ind].second;
}

template <typename KeyType, typename ValueType, typename KeyComparator>
bool HASH_TABLE_BLOCK_TYPE::Insert(slot_offset_t bucket_ind, const KeyType &key, const ValueType &value) {
  if (IsReadable(bucket_ind)) {
    return false;
  }

  array_[bucket_ind] = {key, value};
  SetBit(readable_, bucket_ind, true);
  SetBit(occupied_, bucket_ind, true);
  return true;
}

template <typename KeyType, typename ValueType, typename KeyComparator>
void HASH_TABLE_BLOCK_TYPE::Remove(slot_offset_t bucket_ind) {
  SetBit(readable_, bucket_ind, false);
}

template <typename KeyType, typename ValueType, typename KeyComparator>
bool HASH_TABLE_BLOCK_TYPE::IsOccupied(slot_offset_t bucket_ind) const {
  return GetBit(occupied_, bucket_ind);
}

template <typename KeyType, typename ValueType, typename KeyComparator>
bool HASH_TABLE_BLOCK_TYPE::IsReadable(slot_offset_t bucket_ind) const {
  return GetBit(readable_, bucket_ind);
}

template <typename KeyType, typename ValueType, typename KeyComparator>
bool HASH_TABLE_BLOCK_TYPE::GetBit(const std::atomic_char *array, slot_offset_t bucket_ind) const {
  return array[bucket_ind / 8] & (1 << bucket_ind % 8);
}

template <typename KeyType, typename ValueType, typename KeyComparator>
void HASH_TABLE_BLOCK_TYPE::SetBit(std::atomic_char *array, slot_offset_t bucket_ind, bool value) {
  if (value) {
    array[bucket_ind / 8] |= (1 << bucket_ind % 8);
  } else {
    array[bucket_ind / 8] &= ~(1 << bucket_ind % 8);
  }
}

// DO NOT REMOVE ANYTHING BELOW THIS LINE
template class HashTableBlockPage<int, int, IntComparator>;
template class HashTableBlockPage<GenericKey<4>, RID, GenericComparator<4>>;
template class HashTableBlockPage<GenericKey<8>, RID, GenericComparator<8>>;
template class HashTableBlockPage<GenericKey<16>, RID, GenericComparator<16>>;
template class HashTableBlockPage<GenericKey<32>, RID, GenericComparator<32>>;
template class HashTableBlockPage<GenericKey<64>, RID, GenericComparator<64>>;

}  // namespace bustub

Hashtable

Statement

The experiment requires us to insert hash table 、 lookup 、 Delete and resize , The corresponding class declaration is as follows , In order to complete these operations , We have defined several more private auxiliary functions and member variables :

namespace bustub {

#define HASH_TABLE_TYPE LinearProbeHashTable<KeyType, ValueType, KeyComparator>

template <typename KeyType, typename ValueType, typename KeyComparator>
class LinearProbeHashTable : public HashTable<KeyType, ValueType, KeyComparator> {
 public:

  explicit LinearProbeHashTable(const std::string &name, BufferPoolManager *buffer_pool_manager,
                                const KeyComparator &comparator, size_t num_buckets, HashFunction<KeyType> hash_fn);

  bool Insert(Transaction *transaction, const KeyType &key, const ValueType &value) override;
  bool Remove(Transaction *transaction, const KeyType &key, const ValueType &value) override;
  bool GetValue(Transaction *transaction, const KeyType &key, std::vector<ValueType> *result) override;
  void Resize(size_t initial_size);
  size_t GetSize();

 private:
  using slot_index_t = size_t;
  using block_index_t = size_t;
  enum class LockType { READ = 0, WRITE = 1 };

  /**
   * initialize header page and allocate block pages for it
   * @param page the hash table header page
   */
  void InitHeaderPage(HashTableHeaderPage *page);

  /**
   * get index according to key
   * @param key the key to be hashed
   * @return a tuple contains slot index, block page index and bucket index
   */
  std::tuple<slot_index_t, block_index_t, slot_offset_t> GetIndex(const KeyType &key);

  /**
   * linear probe step forward
   * @param bucket_index the bucket index
   * @param block_index the hash table block page index
   * @param header_page hash table header page
   * @param raw_block_page raw hash table block page
   * @param block_page hash table block page
   * @param lock_type lock type of block page
   */
  void StepForward(slot_offset_t &bucket_index, block_index_t &block_index, Page *&raw_block_page,
                   HASH_TABLE_BLOCK_TYPE *&block_page, LockType lockType);

  bool InsertImpl(Transaction *transaction, const KeyType &key, const ValueType &value);
    
  inline bool IsMatch(HASH_TABLE_BLOCK_TYPE *block_page, slot_offset_t bucket_index, const KeyType &key,
                      const ValueType &value) {
    return !comparator_(key, block_page->KeyAt(bucket_index)) && value == block_page->ValueAt(bucket_index);
  }

  inline HashTableHeaderPage *HeaderPageCast(Page *page) {
    return reinterpret_cast<HashTableHeaderPage *>(page->GetData());
  }

  inline HASH_TABLE_BLOCK_TYPE *BlockPageCast(Page *page) {
    return reinterpret_cast<HASH_TABLE_BLOCK_TYPE *>(page->GetData());
  }

  /**
   * get the slot number of hash table block page
   * @param block_index the index of hash table block page
   * @return the slot number of block page
   */
  inline size_t GetBlockArraySize(block_index_t block_index){
    return block_index < num_pages_ - 1 ? BLOCK_ARRAY_SIZE : last_block_array_size_;
  }

  // member variable
  page_id_t header_page_id_;
  BufferPoolManager *buffer_pool_manager_;
  KeyComparator comparator_;
  std::vector<page_id_t> page_ids_;
  size_t num_buckets_;
  size_t num_pages_;
  size_t last_block_array_size_;

  // Readers includes inserts and removes, writer is only resize
  ReaderWriterLatch table_latch_;

  // Hash function
  HashFunction<KeyType> hash_fn_;
};

}  // namespace bustub

Constructors

In the constructor, it is responsible for num_buckets ( That is to say slot The number of ) Distribute Page, the last one Page Of slot The number may be less than the previous Page. Here will also be each HashTableBlockPage Corresponding page_id Save to page_ids_ Members inside , Then you don't need to just know someone HashTableBlockPage Of page_id And find BufferPoolManager Ask for HashTableHeaderPage.

template <typename KeyType, typename ValueType, typename KeyComparator>
HASH_TABLE_TYPE::LinearProbeHashTable(const std::string &name, BufferPoolManager *buffer_pool_manager,
                                      const KeyComparator &comparator, size_t num_buckets,
                                      HashFunction<KeyType> hash_fn)
    : buffer_pool_manager_(buffer_pool_manager),
      comparator_(comparator),
      num_buckets_(num_buckets),
      num_pages_((num_buckets - 1) / BLOCK_ARRAY_SIZE + 1),
      last_block_array_size_(num_buckets - (num_pages_ - 1) * BLOCK_ARRAY_SIZE),
      hash_fn_(std::move(hash_fn)) {
  auto page = buffer_pool_manager->NewPage(&header_page_id_);
  page->WLatch();

  InitHeaderPage(HeaderPageCast(page));

  page->WUnlatch();
  buffer_pool_manager_->UnpinPage(header_page_id_, true);
}

template <typename KeyType, typename ValueType, typename KeyComparator>
void HASH_TABLE_TYPE::InitHeaderPage(HashTableHeaderPage *header_page) {
  header_page->SetPageId(header_page_id_);
  header_page->SetSize(num_buckets_);

  page_ids_.clear();
  for (size_t i = 0; i < num_pages_; ++i) {
    page_id_t page_id;
    buffer_pool_manager_->NewPage(&page_id);
    buffer_pool_manager_->UnpinPage(page_id, false);
    header_page->AddBlockPageId(page_id);
    page_ids_.push_back(page_id);
  }
}

lookup

Hash table uses linear detection method to find key value pairs , Because the experiment requires that the hash table supports inserting key value pairs with different values of the same key , Therefore, in the process of linear detection, you need to insert the values of all the same keys result Vector :

template <typename KeyType, typename ValueType, typename KeyComparator>
bool HASH_TABLE_TYPE::GetValue(Transaction *transaction, const KeyType &key, std::vector<ValueType> *result) {
  table_latch_.RLock();

  // get slot index, block page index and bucket index according to key
  auto [slot_index, block_index, bucket_index] = GetIndex(key);

  // get block page that contains the key
  auto raw_block_page = buffer_pool_manager_->FetchPage(page_ids_[block_index]);
  raw_block_page->RLatch();
  auto block_page = BlockPageCast(raw_block_page);

  // linear probe
  while (block_page->IsOccupied(bucket_index)) {
    // find the correct position
    if (block_page->IsReadable(bucket_index) && !comparator_(key, block_page->KeyAt(bucket_index))) {
      result->push_back(block_page->ValueAt(bucket_index));
    }

    StepForward(bucket_index, block_index, raw_block_page, block_page, LockType::READ);

    // break loop if we have returned to original position
    if (block_index * BLOCK_ARRAY_SIZE + bucket_index == slot_index) {
      break;
    }
  }

  // unlock
  raw_block_page->RUnlatch();
  buffer_pool_manager_->UnpinPage(raw_block_page->GetPageId(), false);
  table_latch_.RUnlock();
  return result->size() > 0;
}

GetIndex Functions are based on key Calculate the corresponding slot_indexblock_index and bucket_index( Namely slot offset), Combined with the above figure, we can understand the working principle of this function :

template <typename KeyType, typename ValueType, typename KeyComparator>
auto HASH_TABLE_TYPE::GetIndex(const KeyType &key) -> std::tuple<slot_index_t, block_index_t, slot_offset_t> {
  slot_index_t slot_index = hash_fn_.GetHash(key) % num_buckets_;
  block_index_t block_index = slot_index / BLOCK_ARRAY_SIZE;
  slot_offset_t bucket_index = slot_index % BLOCK_ARRAY_SIZE;
  return {slot_index, block_index, bucket_index};
}

In the process of linear detection , We may start from one HashTableBlockPage Skip to the next , It needs to be updated at this time bucket_index and block_index

template <typename KeyType, typename ValueType, typename KeyComparator>
void HASH_TABLE_TYPE::StepForward(slot_offset_t &bucket_index, block_index_t &block_index, Page *&raw_block_page,
                                  HASH_TABLE_BLOCK_TYPE *&block_page, LockType lockType) {
  if (++bucket_index != GetBlockArraySize(block_index)) {
    return;
  }

  // move to next block page
  if (lockType == LockType::READ) {
    raw_block_page->RUnlatch();
  } else {
    raw_block_page->WUnlatch();
  }
  buffer_pool_manager_->UnpinPage(page_ids_[block_index], false);

  // update index
  bucket_index = 0;
  block_index = (block_index + 1) % num_pages_;

  // update page
  raw_block_page = buffer_pool_manager_->FetchPage(page_ids_[block_index]);
  if (lockType == LockType::READ) {
    raw_block_page->RLatch();
  } else {
    raw_block_page->WLatch();
  }
  block_page = BlockPageCast(raw_block_page);
}

Insert

The experiment requires that the hash table is not allowed to insert existing key value pairs , At the same time, if you return to the original position during the insertion process , Explain that there is no available slot Used to insert key value pairs , At this time, you need to double the size of the hash table . because Resize The function of also needs to use the insert operation , If called directly Insert A deadlock occurs , So here we use InsertImpl To achieve insertion :

template <typename KeyType, typename ValueType, typename KeyComparator>
bool HASH_TABLE_TYPE::Insert(Transaction *transaction, const KeyType &key, const ValueType &value) {
  table_latch_.RLock();
  auto success = InsertImpl(transaction, key, value);
  table_latch_.RUnlock();
  return success;
}

template <typename KeyType, typename ValueType, typename KeyComparator>
bool HASH_TABLE_TYPE::InsertImpl(Transaction *transaction, const KeyType &key, const ValueType &value) {
  // get slot index, block page index and bucket index according to key
  auto [slot_index, block_index, bucket_index] = GetIndex(key);

  // get block page that contains the key
  auto raw_block_page = buffer_pool_manager_->FetchPage(page_ids_[block_index]);
  raw_block_page->WLatch();
  auto block_page = BlockPageCast(raw_block_page);

  bool success = true;
  while (!block_page->Insert(bucket_index, key, value)) {
    // return false if (key, value) pair already exists
    if (block_page->IsReadable(bucket_index) && IsMatch(block_page, bucket_index, key, value)) {
      success = false;
      break;
    }

    StepForward(bucket_index, block_index, raw_block_page, block_page, LockType::WRITE);

    // resize hash table if we have returned to original position
    if (block_index * BLOCK_ARRAY_SIZE + bucket_index == slot_index) {
      raw_block_page->WUnlatch();
      buffer_pool_manager_->UnpinPage(raw_block_page->GetPageId(), false);

      Resize(num_pages_);
      std::tie(slot_index, block_index, bucket_index) = GetIndex(key);

      raw_block_page = buffer_pool_manager_->FetchPage(page_ids_[block_index]);
      raw_block_page->WLatch();
      block_page = BlockPageCast(raw_block_page);
    }
  }

  raw_block_page->WUnlatch();
  buffer_pool_manager_->UnpinPage(raw_block_page->GetPageId(), success);
  return success;
}

Resize

Because the experiment assumes that the hash table is large , So we can't save all the original key value pairs into memory , Then adjust HashTableHeaderPage Size , Reuse HashTableBlockPage And create a new Page, Then re insert the key value pair . Instead, you should directly create new HashTableHeaderPage and HashTableBlockPage , And delete the old hash table page :

template <typename KeyType, typename ValueType, typename KeyComparator>
void HASH_TABLE_TYPE::Resize(size_t initial_size) {
  table_latch_.WLock();
  num_buckets_ = 2 * initial_size;
  num_pages_ = (num_buckets_ - 1) / BLOCK_ARRAY_SIZE + 1;
  last_block_array_size_ = num_buckets_ - (num_pages_ - 1) * BLOCK_ARRAY_SIZE;

  // save the old header page id
  auto old_header_page_id = header_page_id_;
  std::vector<page_id_t> old_page_ids(page_ids_);

  // get the new header page
  auto raw_header_page = buffer_pool_manager_->NewPage(&header_page_id_);
  raw_header_page->WLatch();
  InitHeaderPage(HeaderPageCast(raw_header_page));

  // move (key, value) pairs to new space
  for (size_t block_index = 0; block_index < num_pages_; ++block_index) {
    auto old_page_id = old_page_ids[block_index];
    auto raw_block_page = buffer_pool_manager_->FetchPage(old_page_id);
    raw_block_page->RLatch();
    auto block_page = BlockPageCast(raw_block_page);

    // move (key, value) pair from each readable slot
    for (slot_offset_t bucket_index = 0; bucket_index < GetBlockArraySize(block_index); ++bucket_index) {
      if (block_page->IsReadable(bucket_index)) {
        InsertImpl(nullptr, block_page->KeyAt(bucket_index), block_page->ValueAt(bucket_index));
      }
    }

    // delete old page
    raw_block_page->RUnlatch();
    buffer_pool_manager_->UnpinPage(old_page_id, false);
    buffer_pool_manager_->DeletePage(old_page_id);
  }

  raw_header_page->WUnlatch();
  buffer_pool_manager_->UnpinPage(header_page_id_, false);
  buffer_pool_manager_->DeletePage(old_header_page_id);
  table_latch_.WUnlock();
}

Delete

The delete operation is very similar to the find operation , But what will be found slot It's just a tombstone :

template <typename KeyType, typename ValueType, typename KeyComparator>
bool HASH_TABLE_TYPE::Remove(Transaction *transaction, const KeyType &key, const ValueType &value) {
  table_latch_.RLock();

  // get slot index, block page index and bucket index according to key
  auto [slot_index, block_index, bucket_index] = GetIndex(key);

  // get block page that contains the key
  auto raw_block_page = buffer_pool_manager_->FetchPage(page_ids_[block_index]);
  raw_block_page->WLatch();
  auto block_page = BlockPageCast(raw_block_page);

  bool success = false;
  while (block_page->IsOccupied(bucket_index)) {
    // remove the (key, value) pair if find the matched readable one
    if (IsMatch(block_page, bucket_index, key, value)) {
      if (block_page->IsReadable(bucket_index)) {
        block_page->Remove(bucket_index);
        success = true;
      } else {
        success = false;
      }
      break;
    }

    // step forward
    StepForward(bucket_index, block_index, raw_block_page, block_page, LockType::WRITE);

    // break loop if we have returned to original position
    if (block_index * BLOCK_ARRAY_SIZE + bucket_index == slot_index) {
      break;
    }
  }

  raw_block_page->WUnlatch();
  buffer_pool_manager_->UnpinPage(raw_block_page->GetPageId(), success);
  table_latch_.RUnlock();
  return success;
}

Get size

Finally, get the size of the hash table , Go straight back to num_buckets_ That's it :

template <typename KeyType, typename ValueType, typename KeyComparator>
size_t HASH_TABLE_TYPE::GetSize() {
  return num_buckets_;
}

test

The test results of hash table are as follows ,6 All tests passed :

 test result

summary

This experiment mainly investigates the linear detection hash table 、 Understanding of buffer pool manager and read / write lock , The difficulty is slightly higher than that of the previous experiment , But after understanding the structure diagram of hash table, it should not be difficult to complete the experiment , above ~~

原网站

版权声明
本文为[One yo]所创,转载请带上原文链接,感谢
https://yzsam.com/2022/188/202207070944460904.html