当前位置:网站首页>10. CNN applied to handwritten digit recognition
10. CNN applied to handwritten digit recognition
2022-07-08 01:02:00 【booze-J】
The code running platform is jupyter-notebook, Code blocks in the article , According to jupyter-notebook Written in the order of division in , Run article code , Glue directly into jupyter-notebook that will do . The comments given by the overall code are quite simple .
1. Import third-party library
import numpy as np
from keras.datasets import mnist
from keras.utils import np_utils
from keras.models import Sequential
from keras.layers import Dense,Dropout,Convolution2D,MaxPooling2D,Flatten
from tensorflow.keras.optimizers import Adam
2. Loading data and data preprocessing
# Load data
(x_train,y_train),(x_test,y_test) = mnist.load_data()
# (60000, 28, 28)
print("x_shape:\n",x_train.shape)
# (60000,) Not yet one-hot code You need to operate by yourself later
print("y_shape:\n",y_train.shape)
# (60000, 28, 28) -> (60000,28,28,1)=( Number of pictures , Picture height , Image width , The number of channels in the picture ) reshape() Middle parameter filling -1 Parameter results can be calculated automatically Divide 255.0 To normalize
# Normalization is critical , It can greatly reduce the amount of calculation
x_train = x_train.reshape(-1,28,28,1)/255.0
x_test = x_test.reshape(-1,28,28,1)/255.0
# in one hot Format
y_train = np_utils.to_categorical(y_train,num_classes=10)
y_test = np_utils.to_categorical(y_test,num_classes=10)
3. Training models
# Define sequential model
model = Sequential()
# The first convolution layer Note that the first layer should write the size of the input image Later layers can be ignored
# input_shape Input plane
# filters Convolution kernel / Number of filters
# kernel_size Convolution window size
# strides step
# padding padding The way same/valid
# activation Activation function
model.add(Convolution2D(
input_shape=(28,28,1),
filters=32,
kernel_size=5,
strides=1,
padding="same",
activation="relu"
))
# The first pool
model.add(MaxPooling2D(
pool_size=2,
strides=2,
padding="same"
))
# The second pooling layer
model.add(Convolution2D(filters=64,kernel_size=5,strides=1,padding="same",activation="relu"))
# The second pooling layer
model.add(MaxPooling2D(pool_size=2,strides=2,padding="same"))
# Flatten the output of the second pool layer into 1 dimension
model.add(Flatten())
# The first full connection layer
model.add(Dense(units=1024,activation="relu"))
# Dropout Random selection 50% Neurons are trained
model.add(Dropout(0.5))
# The second full connection layer
model.add(Dense(units=10,activation="softmax"))
# Define optimizer Set the learning rate to 1e-4
adam = Adam(lr=1e-4)
# Define optimizer ,loss function, The accuracy of calculation during training
model.compile(optimizer=adam,loss="categorical_crossentropy",metrics=["accuracy"])
# Training models
model.fit(x_train,y_train,batch_size=64,epochs=10)
# Evaluation model
loss,accuracy=model.evaluate(x_test,y_test)
print("test loss:",loss)
print("test accuracy:",accuracy)
Code run results :
Some points needing attention in the code , Explanations and reminders are also given in the code comments .
Be careful
- The first layer of neural network is to write the size of the input image Later layers can be ignored
边栏推荐
- ReentrantLock 公平锁源码 第0篇
- 50MHz generation time
- [Yugong series] go teaching course 006 in July 2022 - automatic derivation of types and input and output
- CVE-2022-28346:Django SQL注入漏洞
- [reprint] solve the problem that CONDA installs pytorch too slowly
- 12.RNN应用于手写数字识别
- Serial port receives a packet of data
- 手写一个模拟的ReentrantLock
- 14.绘制网络模型结构
- 133. Clone map
猜你喜欢
10.CNN应用于手写数字识别
Thinkphp内核工单系统源码商业开源版 多用户+多客服+短信+邮件通知
Cancel the down arrow of the default style of select and set the default word of select
7.正则化应用
Analysis of 8 classic C language pointer written test questions
新库上线 | CnOpenData中国星级酒店数据
QT adds resource files, adds icons for qaction, establishes signal slot functions, and implements
利用GPU训练网络模型
NVIDIA Jetson测试安装yolox过程记录
5.过拟合,dropout,正则化
随机推荐
letcode43:字符串相乘
The whole life cycle of commodity design can be included in the scope of industrial Internet
What is load balancing? How does DNS achieve load balancing?
3.MNIST数据集分类
新库上线 | CnOpenData中华老字号企业名录
完整的模型训练套路
Which securities company has a low, safe and reliable account opening commission
CVE-2022-28346:Django SQL注入漏洞
接口测试要测试什么?
New library online | information data of Chinese journalists
Analysis of 8 classic C language pointer written test questions
133. 克隆图
13. Model saving and loading
Su embedded training - Day5
[Yugong series] go teaching course 006 in July 2022 - automatic derivation of types and input and output
英雄联盟胜负预测--简易肯德基上校
新库上线 | 中国记者信息数据
5.过拟合,dropout,正则化
串口接收一包数据
Letcode43: string multiplication