当前位置:网站首页>7.正则化应用
7.正则化应用
2022-07-07 23:12:00 【booze-J】
一、正则化的应用
在6.Dropout应用中的未使用Dropout的代码的网络模型构建中添加正则化。
将6.Dropout应用中的
# 创建模型 输入784个神经元,输出10个神经元
model = Sequential([
# 定义输出是200 输入是784,设置偏置为1,添加softmax激活函数 第一个隐藏层有200个神经元
Dense(units=200,input_dim=784,bias_initializer='one',activation="tanh"),
# 第二个隐藏层有 100个神经元
Dense(units=100,bias_initializer='one',activation="tanh"),
Dense(units=10,bias_initializer='one',activation="softmax")
])
修改为
# 创建模型 输入784个神经元,输出10个神经元
model = Sequential([
# 定义输出是200 输入是784,设置偏置为1,添加softmax激活函数 第一个隐藏层有200个神经元
Dense(units=200,input_dim=784,bias_initializer='one',activation="tanh",kernel_regularizer=l2(0.0003)),
# 第二个隐藏层有 100个神经元
Dense(units=100,bias_initializer='one',activation="tanh",kernel_regularizer=l2(0.0003)),
Dense(units=10,bias_initializer='one',activation="softmax",kernel_regularizer=l2(0.0003))
])
使用l2正则化之前需要先导入from keras.regularizers import l2
。
运行结果:
从运行结果可以看出来明显克服了一些过拟合的情况,模型对于数据集不是很复杂,加上正则化的话,它的效果可能就不是很好。
完整代码
代码运行平台为jupyter-notebook,文章中的代码块,也是按照jupyter-notebook中的划分顺序进行书写的,运行文章代码,直接分单元粘入到jupyter-notebook即可。
1.导入第三方库
import numpy as np
from keras.datasets import mnist
from keras.utils import np_utils
from keras.models import Sequential
from keras.layers import Dense
from tensorflow.keras.optimizers import SGD
from keras.regularizers import l2
2.加载数据及数据预处理
# 载入数据
(x_train,y_train),(x_test,y_test) = mnist.load_data()
# (60000, 28, 28)
print("x_shape:\n",x_train.shape)
# (60000,) 还未进行one-hot编码 需要后面自己操作
print("y_shape:\n",y_train.shape)
# (60000, 28, 28) -> (60000,784) reshape()中参数填入-1的话可以自动计算出参数结果 除以255.0是为了归一化
x_train = x_train.reshape(x_train.shape[0],-1)/255.0
x_test = x_test.reshape(x_test.shape[0],-1)/255.0
# 换one hot格式
y_train = np_utils.to_categorical(y_train,num_classes=10)
y_test = np_utils.to_categorical(y_test,num_classes=10)
3.训练模型
# 创建模型 输入784个神经元,输出10个神经元
model = Sequential([
# 定义输出是200 输入是784,设置偏置为1,添加softmax激活函数 第一个隐藏层有200个神经元
Dense(units=200,input_dim=784,bias_initializer='one',activation="tanh",kernel_regularizer=l2(0.0003)),
# 第二个隐藏层有 100个神经元
Dense(units=100,bias_initializer='one',activation="tanh",kernel_regularizer=l2(0.0003)),
Dense(units=10,bias_initializer='one',activation="softmax",kernel_regularizer=l2(0.0003))
])
# 定义优化器
sgd = SGD(lr=0.2)
# 定义优化器,loss_function,训练过程中计算准确率
model.compile(
optimizer=sgd,
loss="categorical_crossentropy",
metrics=['accuracy']
)
# 训练模型
model.fit(x_train,y_train,batch_size=32,epochs=10)
# 评估模型
# 测试集的loss和准确率
loss,accuracy = model.evaluate(x_test,y_test)
print("\ntest loss",loss)
print("test_accuracy:",accuracy)
# 训练集的loss和准确率
loss,accuracy = model.evaluate(x_train,y_train)
print("\ntrain loss",loss)
print("train_accuracy:",accuracy)
边栏推荐
猜你喜欢
Qt添加资源文件,为QAction添加图标,建立信号槽函数并实现
华为交换机S5735S-L24T4S-QA2无法telnet远程访问
Fofa attack and defense challenge record
NVIDIA Jetson test installation yolox process record
Reentrantlock fair lock source code Chapter 0
How to insert highlighted code blocks in WPS and word
Reptile practice (VIII): reptile expression pack
Tapdata 的 2.0 版 ,开源的 Live Data Platform 现已发布
[go record] start go language from scratch -- make an oscilloscope with go language (I) go language foundation
After going to ByteDance, I learned that there are so many test engineers with an annual salary of 40W?
随机推荐
How does the markdown editor of CSDN input mathematical formulas--- Latex syntax summary
Leetcode brush questions
5G NR 系统消息
Cancel the down arrow of the default style of select and set the default word of select
NVIDIA Jetson test installation yolox process record
jemter分布式
Four stages of sand table deduction in attack and defense drill
The method of server defense against DDoS, Hangzhou advanced anti DDoS IP section 103.219.39 x
A network composed of three convolution layers completes the image classification task of cifar10 data set
深潜Kotlin协程(二十三 完结篇):SharedFlow 和 StateFlow
【obs】官方是配置USE_GPU_PRIORITY 效果为TRUE的
第一讲:链表中环的入口结点
STL--String类的常用功能复写
22年秋招心得
【obs】Impossible to find entrance point CreateDirect3D11DeviceFromDXGIDevice
NTT template for Tourism
What if the testing process is not perfect and the development is not active?
Hotel
取消select的默认样式的向下箭头和设置select默认字样
手机上炒股安全么?