当前位置:网站首页>【深度学习】AI一键换天
【深度学习】AI一键换天
2022-07-07 23:16:00 【InfoQ】
1.实验目标
2.案例内容介绍

3.实验步骤
3.1安装和导入依赖包
import os
import moxing as mox
file_name = 'SkyAR'
if not os.path.exists(file_name):
mox.file.copy('obs://modelarts-labs-bj4-v2/case_zoo/SkyAR/SkyAR.zip', 'SkyAR.zip')
os.system('unzip SkyAR.zip')
os.system('rm SkyAR.zip')
mox.file.copy_parallel('obs://modelarts-labs-bj4-v2/case_zoo/SkyAR/resnet50-19c8e357.pth', '/home/ma-user/.cache/torch/checkpoints/resnet50-19c8e357.pth')!pip uninstall opencv-python -y
!pip uninstall opencv-contrib-python -y
!pip install opencv-contrib-python==4.5.3.56cd SkyAR/import time
import json
import base64
import numpy as np
import matplotlib.pyplot as plt
import cv2
import argparse
from networks import *
from skyboxengine import *
import utils
import torch
from IPython.display import clear_output, Image, display, HTML
%matplotlib inline
# 如果存在GPU则在GPU上面运行
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")3.2设定算法参数
parameter = {
"net_G": "coord_resnet50",
"ckptdir": "./checkpoints_G_coord_resnet50",
"input_mode": "video",
"datadir": "./test_videos/sky.mp4", # 待处理的原视频路径
"skybox": "sky.jpg", # 要替换的天空图片路径
"in_size_w": 384,
"in_size_h": 384,
"out_size_w": 845,
"out_size_h": 480,
"skybox_center_crop": 0.5,
"auto_light_matching": False,
"relighting_factor": 0.8,
"recoloring_factor": 0.5,
"halo_effect": True,
"output_dir": "./jpg_output",
"save_jpgs": False
}
str_json = json.dumps(parameter)3.3预览一下原视频
video_name = parameter['datadir']
def arrayShow(img):
img = cv2.resize(img, (0, 0), fx=0.25, fy=0.25, interpolation=cv2.INTER_NEAREST)
_,ret = cv2.imencode('.jpg', img)
return Image(data=ret)
# 打开一个视频流
cap = cv2.VideoCapture(video_name)
frame_id = 0
while True:
try:
clear_output(wait=True) # 清除之前的显示
ret, frame = cap.read() # 读取一帧图片
if ret:
frame_id += 1
if frame_id > 200:
break
cv2.putText(frame, str(frame_id), (5, 15), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 1) # 画frame_id
tmp = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) # 转换色彩模式
img = arrayShow(frame)
display(img) # 显示图片
time.sleep(0.05) # 线程睡眠一段时间再处理下一帧图片
else:
break
except KeyboardInterrupt:
cap.release()
cap.release()预览一下要替换的天空图片
img= cv2.imread(os.path.join('./skybox', parameter['skybox']))
img2 = img[:, :, ::-1]
plt.imshow(img2)3.4定义SkyFilter类
class Struct:
def __init__(self, **entries):
self.__dict__.update(entries)
def parse_config():
data = json.loads(str_json)
args = Struct(**data)
return args
args = parse_config()class SkyFilter():
def __init__(self, args):
self.ckptdir = args.ckptdir
self.datadir = args.datadir
self.input_mode = args.input_mode
self.in_size_w, self.in_size_h = args.in_size_w, args.in_size_h
self.out_size_w, self.out_size_h = args.out_size_w, args.out_size_h
self.skyboxengine = SkyBox(args)
self.net_G = define_G(input_nc=3, output_nc=1, ngf=64, netG=args.net_G).to(device)
self.load_model()
self.video_writer = cv2.VideoWriter('out.avi',
cv2.VideoWriter_fourcc(*'MJPG'),
20.0,
(args.out_size_w, args.out_size_h))
self.video_writer_cat = cv2.VideoWriter('compare.avi',
cv2.VideoWriter_fourcc(*'MJPG'),
20.0,
(2*args.out_size_w, args.out_size_h))
if os.path.exists(args.output_dir) is False:
os.mkdir(args.output_dir)
self.output_img_list = []
self.save_jpgs = args.save_jpgs
def load_model(self):
# 加载预训练的天空抠图模型
print('loading the best checkpoint...')
checkpoint = torch.load(os.path.join(self.ckptdir, 'best_ckpt.pt'),
map_location=device)
self.net_G.load_state_dict(checkpoint['model_G_state_dict'])
self.net_G.to(device)
self.net_G.eval()
def write_video(self, img_HD, syneth):
frame = np.array(255.0 * syneth[:, :, ::-1], dtype=np.uint8)
self.video_writer.write(frame)
frame_cat = np.concatenate([img_HD, syneth], axis=1)
frame_cat = np.array(255.0 * frame_cat[:, :, ::-1], dtype=np.uint8)
self.video_writer_cat.write(frame_cat)
# 定义结果缓冲区
self.output_img_list.append(frame_cat)
def synthesize(self, img_HD, img_HD_prev):
h, w, c = img_HD.shape
img = cv2.resize(img_HD, (self.in_size_w, self.in_size_h))
img = np.array(img, dtype=np.float32)
img = torch.tensor(img).permute([2, 0, 1]).unsqueeze(0)
with torch.no_grad():
G_pred = self.net_G(img.to(device))
G_pred = torch.nn.functional.interpolate(G_pred,
(h, w),
mode='bicubic',
align_corners=False)
G_pred = G_pred[0, :].permute([1, 2, 0])
G_pred = torch.cat([G_pred, G_pred, G_pred], dim=-1)
G_pred = np.array(G_pred.detach().cpu())
G_pred = np.clip(G_pred, a_max=1.0, a_min=0.0)
skymask = self.skyboxengine.skymask_refinement(G_pred, img_HD)
syneth = self.skyboxengine.skyblend(img_HD, img_HD_prev, skymask)
return syneth, G_pred, skymask
def cvtcolor_and_resize(self, img_HD):
img_HD = cv2.cvtColor(img_HD, cv2.COLOR_BGR2RGB)
img_HD = np.array(img_HD / 255., dtype=np.float32)
img_HD = cv2.resize(img_HD, (self.out_size_w, self.out_size_h))
return img_HD
def process_video(self):
# 逐帧处理视频
cap = cv2.VideoCapture(self.datadir)
m_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
img_HD_prev = None
for idx in range(m_frames):
ret, frame = cap.read()
if ret:
img_HD = self.cvtcolor_and_resize(frame)
if img_HD_prev is None:
img_HD_prev = img_HD
syneth, G_pred, skymask = self.synthesize(img_HD, img_HD_prev)
self.write_video(img_HD, syneth)
img_HD_prev = img_HD
if (idx + 1) % 50 == 0:
print(f'processing video, frame {idx + 1} / {m_frames} ... ')
else: # 如果到达最后一帧
break3.5开始处理视频
sf = SkyFilter(args)
sf.process_video()3.6对比原视频和处理后的视频
video_name = "compare.avi"
def arrayShow(img):
_,ret = cv2.imencode('.jpg', img)
return Image(data=ret)
# 打开一个视频流
cap = cv2.VideoCapture(video_name)
frame_id = 0
while True:
try:
clear_output(wait=True) # 清除之前的显示
ret, frame = cap.read() # 读取一帧图片
if ret:
frame_id += 1
cv2.putText(frame, str(frame_id), (5, 15), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 1) # 画frame_id
tmp = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) # 转换色彩模式
img = arrayShow(frame)
display(img) # 显示图片
time.sleep(0.05) # 线程睡眠一段时间再处理下一帧图片
else:
break
except KeyboardInterrupt:
cap.release()
cap.release()3.7 生成你自己的换天视频
边栏推荐
- Cause analysis and solution of too laggy page of [test interview questions]
- [note] common combined filter circuit
- 12.RNN应用于手写数字识别
- 【obs】官方是配置USE_GPU_PRIORITY 效果为TRUE的
- German prime minister says Ukraine will not receive "NATO style" security guarantee
- Letcode43: string multiplication
- 13.模型的保存和载入
- 接口测试要测试什么?
- Leetcode brush questions
- 4.交叉熵
猜你喜欢
随机推荐
AI zhetianchuan ml novice decision tree
Basic principle and usage of dynamic library, -fpic option context
CVE-2022-28346:Django SQL注入漏洞
New library online | cnopendata China Star Hotel data
【obs】Impossible to find entrance point CreateDirect3D11DeviceFromDXGIDevice
3.MNIST数据集分类
Solution to the problem of unserialize3 in the advanced web area of the attack and defense world
Hotel
Reentrantlock fair lock source code Chapter 0
How does starfish OS enable the value of SFO in the fourth phase of SFO destruction?
新库上线 | 中国记者信息数据
什么是负载均衡?DNS如何实现负载均衡?
Cause analysis and solution of too laggy page of [test interview questions]
手写一个模拟的ReentrantLock
Interface test advanced interface script use - apipost (pre / post execution script)
基于卷积神经网络的恶意软件检测方法
ABAP ALV LVC template
fabulous! How does idea open multiple projects in a single window?
My best game based on wechat applet development
[note] common combined filter circuit




![[necessary for R & D personnel] how to make your own dataset and display it.](/img/50/3d826186b563069fd8d433e8feefc4.png)




