当前位置:网站首页>6.Dropout应用
6.Dropout应用
2022-07-07 23:12:00 【booze-J】
一、未使用Dropout的正常情况下
在4.交叉熵的代码的网络模型构建中添加一些隐藏层,并且输出训练集的损失和准确率。
将4.交叉熵中的
# 创建模型 输入784个神经元,输出10个神经元
model = Sequential([
# 定义输出是10 输入是784,设置偏置为1,添加softmax激活函数
Dense(units=10,input_dim=784,bias_initializer='one',activation="softmax"),
])
添加隐藏层修改为:
# 创建模型 输入784个神经元,输出10个神经元
model = Sequential([
# 定义输出是200 输入是784,设置偏置为1,添加softmax激活函数 第一个隐藏层有200个神经元
Dense(units=200,input_dim=784,bias_initializer='one',activation="tanh"),
# 第二个隐藏层有 100个神经元
Dense(units=100,bias_initializer='one',activation="tanh"),
Dense(units=10,bias_initializer='one',activation="softmax")
])
代码运行结果:
对比4.交叉熵的运行结果,可以发现添加更多隐藏层之后,模型测试的准确率大大提高,但是却出现了轻微的过拟合现象。
二、使用Dropout
在模型构建中添加Dropout:
# 创建模型 输入784个神经元,输出10个神经元
model = Sequential([
# 定义输出是200 输入是784,设置偏置为1,添加softmax激活函数 第一个隐藏层有200个神经元
Dense(units=200,input_dim=784,bias_initializer='one',activation="tanh"),
# 让40%的神经元不工作
Dropout(0.4),
# 第二个隐藏层有 100个神经元
Dense(units=100,bias_initializer='one',activation="tanh"),
# 让40%的神经元不工作
Dropout(0.4),
Dense(units=10,bias_initializer='one',activation="softmax")
])
使用Dropout之前需要先导入from keras.layers import Dropout
运行结果:
在这个例子中并不是说使用dropout会得到更好的效果,但是有些情况下,使用dropout是可以得到更好的效果。
但是使用dropout之后,测试准确率和训练准确率还是比较接近的,过拟合现象不是很明显。从训练结果中可以看到,训练过程中的准确率都低于最终模型测试训练集的准确率,这是因为使用dropout之后,每次训练都只是使用部分神经元进行训练,然后模型训练完之后,最后测试的时候,是使用所有神经元进行测试的,所以效果会更好。
完整代码
1.未使用Dropout情况的完整代码
代码运行平台为jupyter-notebook,文章中的代码块,也是按照jupyter-notebook中的划分顺序进行书写的,运行文章代码,直接分单元粘入到jupyter-notebook即可。
1.导入第三方库
import numpy as np
from keras.datasets import mnist
from keras.utils import np_utils
from keras.models import Sequential
from keras.layers import Dense,Dropout
from tensorflow.keras.optimizers import SGD
2.加载数据及数据预处理
# 载入数据
(x_train,y_train),(x_test,y_test) = mnist.load_data()
# (60000, 28, 28)
print("x_shape:\n",x_train.shape)
# (60000,) 还未进行one-hot编码 需要后面自己操作
print("y_shape:\n",y_train.shape)
# (60000, 28, 28) -> (60000,784) reshape()中参数填入-1的话可以自动计算出参数结果 除以255.0是为了归一化
x_train = x_train.reshape(x_train.shape[0],-1)/255.0
x_test = x_test.reshape(x_test.shape[0],-1)/255.0
# 换one hot格式
y_train = np_utils.to_categorical(y_train,num_classes=10)
y_test = np_utils.to_categorical(y_test,num_classes=10)
3.训练模型
# 创建模型 输入784个神经元,输出10个神经元
model = Sequential([
# 定义输出是200 输入是784,设置偏置为1,添加softmax激活函数 第一个隐藏层有200个神经元
Dense(units=200,input_dim=784,bias_initializer='one',activation="tanh"),
# 第二个隐藏层有 100个神经元
Dense(units=100,bias_initializer='one',activation="tanh"),
Dense(units=10,bias_initializer='one',activation="softmax")
])
# 定义优化器
sgd = SGD(lr=0.2)
# 定义优化器,loss_function,训练过程中计算准确率
model.compile(
optimizer=sgd,
loss="categorical_crossentropy",
metrics=['accuracy']
)
# 训练模型
model.fit(x_train,y_train,batch_size=32,epochs=10)
# 评估模型
# 测试集的loss和准确率
loss,accuracy = model.evaluate(x_test,y_test)
print("\ntest loss",loss)
print("test_accuracy:",accuracy)
# 训练集的loss和准确率
loss,accuracy = model.evaluate(x_train,y_train)
print("\ntrain loss",loss)
print("train_accuracy:",accuracy)
2.使用Dropout的完整代码
代码运行平台为jupyter-notebook,文章中的代码块,也是按照jupyter-notebook中的划分顺序进行书写的,运行文章代码,直接分单元粘入到jupyter-notebook即可。
1.导入第三方库
import numpy as np
from keras.datasets import mnist
from keras.utils import np_utils
from keras.models import Sequential
from keras.layers import Dense,Dropout
from tensorflow.keras.optimizers import SGD
2.加载数据及数据预处理
# 载入数据
(x_train,y_train),(x_test,y_test) = mnist.load_data()
# (60000, 28, 28)
print("x_shape:\n",x_train.shape)
# (60000,) 还未进行one-hot编码 需要后面自己操作
print("y_shape:\n",y_train.shape)
# (60000, 28, 28) -> (60000,784) reshape()中参数填入-1的话可以自动计算出参数结果 除以255.0是为了归一化
x_train = x_train.reshape(x_train.shape[0],-1)/255.0
x_test = x_test.reshape(x_test.shape[0],-1)/255.0
# 换one hot格式
y_train = np_utils.to_categorical(y_train,num_classes=10)
y_test = np_utils.to_categorical(y_test,num_classes=10)
3.训练模型
# 创建模型 输入784个神经元,输出10个神经元
model = Sequential([
# 定义输出是200 输入是784,设置偏置为1,添加softmax激活函数 第一个隐藏层有200个神经元
Dense(units=200,input_dim=784,bias_initializer='one',activation="tanh"),
# 让40%的神经元不工作
Dropout(0.4),
# 第二个隐藏层有 100个神经元
Dense(units=100,bias_initializer='one',activation="tanh"),
# 让40%的神经元不工作
Dropout(0.4),
Dense(units=10,bias_initializer='one',activation="softmax")
])
# 定义优化器
sgd = SGD(lr=0.2)
# 定义优化器,loss_function,训练过程中计算准确率
model.compile(
optimizer=sgd,
loss="categorical_crossentropy",
metrics=['accuracy']
)
# 训练模型
model.fit(x_train,y_train,batch_size=32,epochs=10)
# 评估模型
# 测试集的loss和准确率
loss,accuracy = model.evaluate(x_test,y_test)
print("\ntest loss",loss)
print("test_accuracy:",accuracy)
# 训练集的loss和准确率
loss,accuracy = model.evaluate(x_train,y_train)
print("\ntrain loss",loss)
print("train_accuracy:",accuracy)
边栏推荐
- Invalid V-for traversal element style
- Play sonar
- New library online | cnopendata China Star Hotel data
- Password recovery vulnerability of foreign public testing
- 2022-07-07: the original array is a monotonic array with numbers greater than 0 and less than or equal to K. there may be equal numbers in it, and the overall trend is increasing. However, the number
- 接口测试要测试什么?
- 他们齐聚 2022 ECUG Con,只为「中国技术力量」
- 什么是负载均衡?DNS如何实现负载均衡?
- Cascade-LSTM: A Tree-Structured Neural Classifier for Detecting Misinformation Cascades(KDD20)
- 新库上线 | CnOpenData中华老字号企业名录
猜你喜欢
fabulous! How does idea open multiple projects in a single window?
华为交换机S5735S-L24T4S-QA2无法telnet远程访问
Analysis of 8 classic C language pointer written test questions
Course of causality, taught by Jonas Peters, University of Copenhagen
语义分割模型库segmentation_models_pytorch的详细使用介绍
QT adds resource files, adds icons for qaction, establishes signal slot functions, and implements
12.RNN应用于手写数字识别
Image data preprocessing
Tapdata 的 2.0 版 ,开源的 Live Data Platform 现已发布
Interface test advanced interface script use - apipost (pre / post execution script)
随机推荐
第一讲:链表中环的入口结点
取消select的默认样式的向下箭头和设置select默认字样
Cve-2022-28346: Django SQL injection vulnerability
German prime minister says Ukraine will not receive "NATO style" security guarantee
Invalid V-for traversal element style
4.交叉熵
大二级分类产品页权重低,不收录怎么办?
图像数据预处理
哪个券商公司开户佣金低又安全,又靠谱
Analysis of 8 classic C language pointer written test questions
【obs】Impossible to find entrance point CreateDirect3D11DeviceFromDXGIDevice
【笔记】常见组合滤波电路
5.过拟合,dropout,正则化
51与蓝牙模块通讯,51驱动蓝牙APP点灯
3 years of experience, can't you get 20K for the interview and test post? Such a hole?
炒股开户怎么最方便,手机上开户安全吗
fabulous! How does idea open multiple projects in a single window?
Kubernetes Static Pod (静态Pod)
基于微信小程序开发的我最在行的小游戏
Hotel