当前位置:网站首页>MNIST implementation using pytoch in jupyter notebook
MNIST implementation using pytoch in jupyter notebook
2022-07-06 10:25:00 【How about a song without trace】
" technological process "
#1、 Load necessary Libraries
import torch.nn as nn
import torch.nn.functional as F
import torch
import torch.optim as optim
from torchvision import datasets , transforms
#2、 Define super parameters
BATCH_SIZE = 16 # Data per batch
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
EPOCHS = 10 # Rounds of training data
#3、 structure pipline, Image processing
pipline = transforms.Compose({
transforms.ToTensor(),# Convert the picture to tensor
transforms.Normalize((0.1307),(0.3081)) # Regularization , When the model is over fitted , Reduce model complexity
})
#4、 Download load data
from torch.utils.data import DataLoader
train_set = datasets.MNIST("data2",train=True,download=True,transform=pipline)
test_set = datasets.MNIST("data2",train=False,download=True,transform=pipline)
# Load training dataset
train_loader = DataLoader(train_set,batch_size=BATCH_SIZE,shuffle=True)
# Load test data set
test_loader = DataLoader(test_set,batch_size=BATCH_SIZE,shuffle=True)
# Show the pictures
with open("./data2/MNIST/raw/train-images-idx3-ubyte","rb") as f:
file = f.read()
image1 = [int(str(item).encode("ascii") ,16) for item in file[16:16+784]]
print(image1)
import cv2
import numpy as np
image1_np = np.array(image1,dtype = np.uint8).reshape(28,28,1)
print(image1_np.shape)
# Save the picture
cv2.imwrite('digit.jpg',image1_np)
#5、 Build a network model
class Digit(nn.Module):
def __init__(self): # Construction method
super().__init__() # Call the constructor of the parent class , Inherit the properties of the parent class
self.conv1 = nn.Conv2d(1,10,5) # The input channel is 1, The output channel is 10, Convolution kernels for 5( This is a 5*5 Of )
self.conv2 = nn.Conv2d(10,20,3) # The output of the upper layer is the input of the lower layer
self.fc1 = nn.Linear(20*10*10,500) #20*10*10 The total number of input channels , 500 Output channel
self.fc2 = nn.Linear(500,10) #10 in total 10 The probability of categories
def forward(self,x):
input_size = x.size(0) # The tensor form of the whole picture is batch_size*1*28*28 , So get it directly batch_size
x = self.conv1(x) # Input :batch_size*1*28*28 Output :batch_size*10*24*24 This 10 Is the number of output channels of the first convolution layer ,24 = 28-5+1
x = F.relu(x) # keep shape unchanged , Output batch_size*10*24*24
x = F.max_pool2d(x,2,2) # Input batch_size*10*24*24 Output :batch_size*10*12( halve )*12 # Pooling layer : Compress the picture ( Downsampling ) Extract the most significant features
x = self.conv2(x) # Input :batch_size*10*12*12 Output :batch_size*20*10*10(12-3+1)
x = F.relu(x)
x = x.view(input_size,-1) # The tensile , Or even , This -1 Automatically calculate dimensions This -1 In fact, his value is 20*10*10=2000 Dimensions
x = self.fc1(x) # Input batch_size*2000 Output batch_size*500
x = F.relu(x) # keep shape unchanged
x = self.fc2(x) # Input :batch_size*500 Output :batch_size*10
output = F.log_softmax(x,dim=1) # Loss function After calculation and classification , The probability value of each number
return output
#6、 Define optimizer
model =Digit().to(DEVICE)
optimizer = optim.Adam(model.parameters())
#7、 Define training methods
def train_model(model,device,train_loader,optimizer,epoch):
# model training
model.train()
for batch_index,(data,target) in enumerate(train_loader):
# Deploy to DEVICE Up
data,target = data.to(device),target.to(device)
# The gradient is initialized to 0
optimizer.zero_grad()
# The results after training
output = model(data)
# Calculate the loss
loss = F.cross_entropy(output, target) # The cross entropy loss function is suitable for multi classification tasks
# Find the subscript with the largest probability value
pred = output.max(1,keepdim = True) #1 Represents the horizontal axis You can also write like this pred = output.argmax(dim=1)
# Back propagation
loss.backward()
# Parameter optimization , That is, every parameter update
optimizer.step()
if batch_index % 3000 == 0: # Every processing 3000 Print a picture once
print("Train Epoch :{}\tLOSS : {:.6f}".format(epoch,loss.item())) # This loss It has to be followed by item(), Get the value
#8、 Define test methods
def test_model(model,device,test_loader):
# Model validation
model.eval()
# Accuracy rate
correct = 0.0
# Test loss
test_loss = 0.0
with torch.no_grad(): # No gradient calculation , There will be no back propagation
for data, target in test_loader:
# Deploy to device Up
data,target = data.to(device),target.to(device)
# Test data
output = model(data)
# Calculate the test loss
test_loss += F.cross_entropy(output, target).item()
# Find the subscript of the maximum probability
pred = output.argmax(dim = 1)
# Accumulate correct values
correct += pred.eq(target.view_as(pred)).sum().item()
test_loss /= len(test_loader.dataset)
print("Test-- Average loss {:.4f},Accuracy : {:.3f}\n".format(
test_loss, 100.0 *correct / len(test_loader.dataset)
))
# 9、 Call training and testing methods
for epoch in range(1,EPOCHS + 1):
train_model(model,DEVICE,train_loader,optimizer,epoch)
test_model(model,DEVICE,test_loader)边栏推荐
- pytorch的Dataset的使用
- ZABBIX introduction and installation
- MySQL combat optimization expert 04 uses the execution process of update statements in the InnoDB storage engine to talk about what binlog is?
- How to make shell script executable
- MySQL combat optimization expert 06 production experience: how does the production environment database of Internet companies conduct performance testing?
- Time complexity (see which sentence is executed the most times)
- The 32 year old programmer left and was admitted by pinduoduo and foreign enterprises. After drying out his annual salary, he sighed: it's hard to choose
- South China Technology stack cnn+bilstm+attention
- MySQL实战优化高手09 生产经验:如何为生产环境中的数据库部署监控系统?
- MySQL combat optimization expert 10 production experience: how to deploy visual reporting system for database monitoring system?
猜你喜欢

A necessary soft skill for Software Test Engineers: structured thinking

C杂讲 文件 初讲

If someone asks you about the consistency of database cache, send this article directly to him

What should the redis cluster solution do? What are the plans?

Security design verification of API interface: ticket, signature, timestamp
![17 medical registration system_ [wechat Payment]](/img/b4/f9abfa0fb0447d727078069d888b57.png)
17 medical registration system_ [wechat Payment]

jar运行报错no main manifest attribute

Pytorch LSTM实现流程(可视化版本)

Mexican SQL manual injection vulnerability test (mongodb database) problem solution

C miscellaneous shallow copy and deep copy
随机推荐
数据库中间件_Mycat总结
MySQL底层的逻辑架构
Good blog good material record link
[programmers' English growth path] English learning serial one (verb general tense)
Time in TCP state_ The role of wait?
MySQL combat optimization expert 03 uses a data update process to preliminarily understand the architecture design of InnoDB storage engine
Notes of Dr. Carolyn ROS é's social networking speech
UnicodeDecodeError: ‘utf-8‘ codec can‘t decode byte 0xd0 in position 0成功解决
The governor of New Jersey signed seven bills to improve gun safety
What is the difference between TCP and UDP?
What is the current situation of the game industry in the Internet world?
C miscellaneous lecture continued
Several errors encountered when installing opencv
ZABBIX introduction and installation
A necessary soft skill for Software Test Engineers: structured thinking
实现以form-data参数发送post请求
flask运维脚本(长时间运行)
Google login prompt error code 12501
oracle sys_ Context() function
MySQL combat optimization expert 04 uses the execution process of update statements in the InnoDB storage engine to talk about what binlog is?