当前位置:网站首页>MNIST implementation using pytoch in jupyter notebook
MNIST implementation using pytoch in jupyter notebook
2022-07-06 10:25:00 【How about a song without trace】
" technological process "
#1、 Load necessary Libraries
import torch.nn as nn
import torch.nn.functional as F
import torch
import torch.optim as optim
from torchvision import datasets , transforms
#2、 Define super parameters
BATCH_SIZE = 16 # Data per batch
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
EPOCHS = 10 # Rounds of training data
#3、 structure pipline, Image processing
pipline = transforms.Compose({
transforms.ToTensor(),# Convert the picture to tensor
transforms.Normalize((0.1307),(0.3081)) # Regularization , When the model is over fitted , Reduce model complexity
})
#4、 Download load data
from torch.utils.data import DataLoader
train_set = datasets.MNIST("data2",train=True,download=True,transform=pipline)
test_set = datasets.MNIST("data2",train=False,download=True,transform=pipline)
# Load training dataset
train_loader = DataLoader(train_set,batch_size=BATCH_SIZE,shuffle=True)
# Load test data set
test_loader = DataLoader(test_set,batch_size=BATCH_SIZE,shuffle=True)
# Show the pictures
with open("./data2/MNIST/raw/train-images-idx3-ubyte","rb") as f:
file = f.read()
image1 = [int(str(item).encode("ascii") ,16) for item in file[16:16+784]]
print(image1)
import cv2
import numpy as np
image1_np = np.array(image1,dtype = np.uint8).reshape(28,28,1)
print(image1_np.shape)
# Save the picture
cv2.imwrite('digit.jpg',image1_np)
#5、 Build a network model
class Digit(nn.Module):
def __init__(self): # Construction method
super().__init__() # Call the constructor of the parent class , Inherit the properties of the parent class
self.conv1 = nn.Conv2d(1,10,5) # The input channel is 1, The output channel is 10, Convolution kernels for 5( This is a 5*5 Of )
self.conv2 = nn.Conv2d(10,20,3) # The output of the upper layer is the input of the lower layer
self.fc1 = nn.Linear(20*10*10,500) #20*10*10 The total number of input channels , 500 Output channel
self.fc2 = nn.Linear(500,10) #10 in total 10 The probability of categories
def forward(self,x):
input_size = x.size(0) # The tensor form of the whole picture is batch_size*1*28*28 , So get it directly batch_size
x = self.conv1(x) # Input :batch_size*1*28*28 Output :batch_size*10*24*24 This 10 Is the number of output channels of the first convolution layer ,24 = 28-5+1
x = F.relu(x) # keep shape unchanged , Output batch_size*10*24*24
x = F.max_pool2d(x,2,2) # Input batch_size*10*24*24 Output :batch_size*10*12( halve )*12 # Pooling layer : Compress the picture ( Downsampling ) Extract the most significant features
x = self.conv2(x) # Input :batch_size*10*12*12 Output :batch_size*20*10*10(12-3+1)
x = F.relu(x)
x = x.view(input_size,-1) # The tensile , Or even , This -1 Automatically calculate dimensions This -1 In fact, his value is 20*10*10=2000 Dimensions
x = self.fc1(x) # Input batch_size*2000 Output batch_size*500
x = F.relu(x) # keep shape unchanged
x = self.fc2(x) # Input :batch_size*500 Output :batch_size*10
output = F.log_softmax(x,dim=1) # Loss function After calculation and classification , The probability value of each number
return output
#6、 Define optimizer
model =Digit().to(DEVICE)
optimizer = optim.Adam(model.parameters())
#7、 Define training methods
def train_model(model,device,train_loader,optimizer,epoch):
# model training
model.train()
for batch_index,(data,target) in enumerate(train_loader):
# Deploy to DEVICE Up
data,target = data.to(device),target.to(device)
# The gradient is initialized to 0
optimizer.zero_grad()
# The results after training
output = model(data)
# Calculate the loss
loss = F.cross_entropy(output, target) # The cross entropy loss function is suitable for multi classification tasks
# Find the subscript with the largest probability value
pred = output.max(1,keepdim = True) #1 Represents the horizontal axis You can also write like this pred = output.argmax(dim=1)
# Back propagation
loss.backward()
# Parameter optimization , That is, every parameter update
optimizer.step()
if batch_index % 3000 == 0: # Every processing 3000 Print a picture once
print("Train Epoch :{}\tLOSS : {:.6f}".format(epoch,loss.item())) # This loss It has to be followed by item(), Get the value
#8、 Define test methods
def test_model(model,device,test_loader):
# Model validation
model.eval()
# Accuracy rate
correct = 0.0
# Test loss
test_loss = 0.0
with torch.no_grad(): # No gradient calculation , There will be no back propagation
for data, target in test_loader:
# Deploy to device Up
data,target = data.to(device),target.to(device)
# Test data
output = model(data)
# Calculate the test loss
test_loss += F.cross_entropy(output, target).item()
# Find the subscript of the maximum probability
pred = output.argmax(dim = 1)
# Accumulate correct values
correct += pred.eq(target.view_as(pred)).sum().item()
test_loss /= len(test_loader.dataset)
print("Test-- Average loss {:.4f},Accuracy : {:.3f}\n".format(
test_loss, 100.0 *correct / len(test_loader.dataset)
))
# 9、 Call training and testing methods
for epoch in range(1,EPOCHS + 1):
train_model(model,DEVICE,train_loader,optimizer,epoch)
test_model(model,DEVICE,test_loader)边栏推荐
猜你喜欢

MySQL实战优化高手02 为了执行SQL语句,你知道MySQL用了什么样的架构设计吗?

jar运行报错no main manifest attribute

MySQL combat optimization expert 04 uses the execution process of update statements in the InnoDB storage engine to talk about what binlog is?

Solve the problem of remote connection to MySQL under Linux in Windows

MySQL storage engine

C杂讲 浅拷贝 与 深拷贝

C杂讲 文件 初讲

C杂讲 双向循环链表

How to build an interface automation testing framework?

Notes of Dr. Carolyn ROS é's social networking speech
随机推荐
Not registered via @EnableConfigurationProperties, marked(@ConfigurationProperties的使用)
Preliminary introduction to C miscellaneous lecture document
Set shell script execution error to exit automatically
Transactions have four characteristics?
17 medical registration system_ [wechat Payment]
Implement sending post request with form data parameter
Super detailed steps to implement Wechat public number H5 Message push
C杂讲 浅拷贝 与 深拷贝
17 医疗挂号系统_【微信支付】
Flash operation and maintenance script (running for a long time)
vscode 常用的指令
四川云教和双师模式
Sichuan cloud education and double teacher model
百度百科数据爬取及内容分类识别
What is the difference between TCP and UDP?
Southwest University: Hu hang - Analysis on learning behavior and learning effect
MySQL learning diary (II)
jar运行报错no main manifest attribute
MySQL combat optimization expert 12 what does the memory data structure buffer pool look like?
[after reading the series of must know] one of how to realize app automation without programming (preparation)