当前位置:网站首页>P3250 [HNOI2016] 网络 + [NECPC2022] F.Tree Path 树剖+线段树维护堆
P3250 [HNOI2016] 网络 + [NECPC2022] F.Tree Path 树剖+线段树维护堆
2022-07-03 10:21:00 【HeartFireY】
两道题思路非常像,因此集中记录一下思路和做法
P3250 [HNOI2016] 网络
题目分析
给定一棵有 n n n个节点的树, 有 m m m次如下操作:
0 a b c
表示在 ( a , b ) (a, b) (a,b)的最短路径上增加一条重要度为 c c c的边.
1 t
表示删除第 t t t次操作所增加的边
2 x
表示节点 x x x出现故障. 此时需要回答, 所有不经过 x x x节点的边中最大的重要度.
首先将边权点权化,也就是树上问题序列化,然后利用用线段树维护待查点的补集。由于线段树节点维护序列最大值,因此将节点开成大根堆,然后每个节点记录不经过该节点的路径中的最大权,以及删除的权值。
对于每个增边操作,树剖LCA求出路径所占的全部区间,然后对其补集进行修改。补集可以先对树剖求出的区间排序,然后按顺序找间隔即可。
Code
#include <bits/stdc++.h>
#define int long long
#define endl '\n'
using namespace std;
const int N = 1e5 + 10;
struct edge {
int u, v, w; } edges[N << 1];
vector<int> g[N];
int pfa[N], dep[N], siz[N], son[N], top[N], dfn[N], rnk[N], ind;
int n, m;
void dfs1(int u, int fa){
pfa[u] = fa, dep[u] = dep[fa] + 1, siz[u] = 1;
for(auto &v : g[u]){
if(v == fa) continue;
dfs1(v, u);
siz[u] += siz[v];
if(siz[v] > siz[son[u]]) son[u] = v;
}
}
void dfs2(int u, int tp){
dfn[u] = ++ind, rnk[tp] = 0, top[u] = tp;
if(!son[u]) return;
dfs2(son[u], tp);
for(auto & v: g[u]){
if(v == pfa[u] || v == son[u]) continue;
dfs2(v, v);
}
}
namespace SegmentTree{
struct node{
priority_queue<int> val, del;
int top(){
while(val.size() && del.size() && val.top() == del.top()) val.pop(), del.pop();
return val.empty() ? -1 : val.top();
}
}tree[N << 2];
#define ls rt << 1
#define rs rt << 1 | 1
#define lson ls, l , mid
#define rson rs, mid + 1, r
void update(int rt, int l, int r, int L, int R, int val){
if(l >= L && r <= R){
val > 0 ? tree[rt].val.emplace(val) : tree[rt].del.emplace(-val);
return ;
}
int mid = l + r >> 1;
if(mid >= L) update(lson, L, R, val);
if(mid < R) update(rson, L, R, val);
}
int query(int rt, int l, int r, int pos){
if(l == r) return tree[rt].top();
int mid = l + r >> 1, ans = tree[rt].top();
if(mid >= pos) ans = max(ans, query(lson, pos));
else ans = max(ans, query(rson, pos));
return ans;
}
}
#define pii pair<int,int>
#define fir first
#define sec second
void update(int u, int v, int w){
vector<pii> interval;
while(top[u] != top[v]){
if(dep[top[u]] < dep[top[v]]) swap(u, v);
interval.emplace_back(make_pair(dfn[top[u]], dfn[u]));
u = pfa[top[u]];
}
interval.emplace_back(make_pair(min(dfn[u], dfn[v]), max(dfn[u], dfn[v])));
sort(interval.begin(), interval.end());
int modl = 1;
for(auto & [l, r] : interval){
int modr = l - 1;
if(modl <= l - 1) SegmentTree::update(1, 1, n, modl, modr, w);
modl = r + 1;
}
if(modl <= n) SegmentTree::update(1, 1, n, modl, n, w);
}
inline void solve(){
cin >> n >> m;
for(int i = 1; i <= n - 1; i++){
int u, v; cin >> u >> v;
g[u].emplace_back(v);
g[v].emplace_back(u);
}
dfs1(1, 0);
dfs2(1, 1);
for(int i = 1; i <= m; i++){
int op; cin >> op;
if(op == 0){
cin >> edges[i].u >> edges[i].v >> edges[i].w;
update(edges[i].u, edges[i].v, edges[i].w);
}
else if(op == 1){
int t; cin >> t;
auto &[u ,v, w] = edges[t];
update(u, v, -w);
}
else{
int x; cin >> x;
cout << SegmentTree::query(1, 1, n, dfn[x]) << endl;
}
}
}
signed main(){
ios_base::sync_with_stdio(false), cin.tie(0);
solve();
return 0;
}
[NECPC2022] F.Tree Path
给定一棵树,包含 n n n个节点和 k k k条带权路径,要求支持操作:
- 删除最小的带权路径
- 对于给定的节点 x x x,输出所有不经过 x x x的带权路径中的最小值
跟上道题思路类似,用线段树维护待查节点的补集,注意这里求得是最小值。
注意必须离散化,否则 m a p map map上多个 l o g log log炸常数过不去。
#include <bits/stdc++.h>
#pragma gcc optimize('O2')
//#define int long long
#define endl '\n'
using namespace std;
const int N = 1e5 + 10, INF = 0x3f3f3f3f;
struct edge {
int u, v, w; const bool operator< (const edge &x) {
return w < x.w; }} edges[N];
vector<int> g[N];
int n, k, m;
int pfa[N], dep[N], siz[N], son[N], top[N], dfn[N], rnk[N], ind;
bool del[N];
void dfs1(int u, int fa){
pfa[u] = fa, dep[u] = dep[fa] + 1, siz[u] = 1;
for(auto &v : g[u]){
if(v == fa) continue;
dfs1(v, u);
siz[u] += siz[v];
if(siz[v] > siz[son[u]]) son[u] = v;
}
}
void dfs2(int u, int tp){
dfn[u] = ++ind, rnk[tp] = 0, top[u] = tp;
if(!son[u]) return;
dfs2(son[u], tp);
for(auto & v: g[u]){
if(v == pfa[u] || v == son[u]) continue;
dfs2(v, v);
}
}
namespace SegmentTree{
struct node{
priority_queue<int, vector<int>, greater<>> val;
int top(){
while(val.size() && del[val.top()]) val.pop();
return val.empty() ? INF : val.top();
}
}tree[N << 2];
#define lson rt << 1, l, mid
#define rson rt << 1 | 1, mid + 1, r
void update(int rt, int l, int r, int L, int R, int val){
if(l >= L && r <= R){
tree[rt].val.emplace(val);
return;
}
int mid = l + r >> 1;
if(mid >= L) update(lson, L, R, val);
if(mid < R) update(rson, L, R, val);
}
int query(int rt, int l, int r, int pos){
if(l == r) return tree[rt].top();
int mid = l + r >> 1, ans = tree[rt].top();
if(mid >= pos) ans = min(ans, query(lson, pos));
else ans = min(ans, query(rson, pos));
return ans;
}
}
#define pii pair<int,int>
#define fir first
#define sec second
void update(int u, int v, int w){
vector<pii> interval;
while(top[u] != top[v]){
if(dep[top[u]] < dep[top[v]]) swap(u, v);
interval.emplace_back(make_pair(dfn[top[u]], dfn[u]));
u = pfa[top[u]];
}
interval.emplace_back(make_pair(min(dfn[u], dfn[v]), max(dfn[u], dfn[v])));
sort(interval.begin(), interval.end());
int modl = 1;
for(auto & [l, r] : interval){
int modr = l - 1;
if(modl <= l - 1) SegmentTree::update(1, 1, n, modl, modr, w);
modl = r + 1;
}
if(modl <= n) SegmentTree::update(1, 1, n, modl, n, w);
}
vector<int> v(1, -0x3f3f3f3f);
inline void solve(){
cin >> n >> k >> m;
auto get = [&](int x) {
return lower_bound(v.begin(), v.end(), x) - v.begin(); };
auto dis = [&]() {
sort(v.begin(), v.end()); v.erase(unique(v.begin(), v.end()), v.end()); };
for(int i = 1; i <= n - 1; i++){
int u, v; cin >> u >> v;
g[u].emplace_back(v);
g[v].emplace_back(u);
}
dfs1(1, 0), dfs2(1, 1);
for(int i = 1; i <= k; i++){
cin >> edges[i].u >> edges[i].v >> edges[i].w;
v.emplace_back(edges[i].w);
}
dis();
for(int i = 1; i <= k; i++){
auto &[u, v, w] = edges[i];
update(u ,v, get(w));
}
int min_pos = 1, last = 0;
for(int i = 1; i <= m; i++){
int op = 0; cin >> op;
if(op == 1){
int x; cin >> x, x = x ^ last;
int ans = SegmentTree::query(1, 1, n, dfn[x]);
last = (ans == INF ? -1 : v[ans]);
cout << last << endl;
}
else{
//auto &[u, v, w] = edges[min_pos++];
del[min_pos++] = 1;
}
}
}
signed main(){
ios_base::sync_with_stdio(false), cin.tie(0);
solve();
return 0;
}
边栏推荐
- A simple method of adding dividing lines in recyclerview
- 帝国cms 无缩略图 灵动标签(e:loop)判断有无标题图片(titlepic)的两种写法
- 如何让让别人畏惧你
- 有赞CTO崔玉松:有赞Jarvis核心目标是使产品变得更加聪明和可靠
- Tencent micro app to get wechat user information
- EPS电动转向系统分析
- Analysis of JMM memory model
- Solutions of n-ary linear equations and their criteria
- Execute kubectl on Tencent cloud container service node
- 2. Hal hardware abstraction layer
猜你喜欢
随机推荐
FL Studio 20 unlimited trial fruit arranger Download
程序员的创业陷阱:接私活
项目管理精华读书笔记(六)
英特尔13代酷睿旗舰曝光,单核5.5GHz
The testing department of the company came to the king of the Post-00 roll, and the veteran exclaimed that it was really dry, but
用了这么久线程池,你真的知道如何合理配置线程数吗?
Balance between picture performance of unity mobile game performance optimization spectrum and GPU pressure
C语言 AES加解密
如何成为一名高级数字 IC 设计工程师(1-4)Verilog 编码语法篇:表达式
Internet socket (non) blocking write/read n bytes
MATLAB提取不規則txt文件中的數值數據(簡單且實用)
Gut | 香港中文大学于君组揭示吸烟改变肠道菌群并促进结直肠癌(不要吸烟)
JGG专刊征稿:时空组学
Gut | Yu Jun group of the Chinese University of Hong Kong revealed that smoking changes intestinal flora and promotes colorectal cancer (do not smoke)
Analysis of JMM memory model
C language two-dimensional array
The manuscript will be revised for release tonight. But, still stuck here, maybe what you need is a paragraph.
[proteus simulation] 16 channel water lamp composed of 74hc154 four wire to 12 wire decoder
Touch and screen automatic rotation debugging
Commonly used discrete random distribution