当前位置:网站首页>Image, CV2 read the conversion and size resize change of numpy array of pictures
Image, CV2 read the conversion and size resize change of numpy array of pictures
2022-07-06 08:32:00 【MAR-Sky】
Several image size modifications and parameter summaries
(from torchvision import transforms as T)
Display different size formats
- Image The type and T Conduct resize The picture of size attribute The order of display parameters is W、H
- cv2 Display of Of shape The order of display parameters is H、W、C
- T.ToTensor()(img), Convert the picture to tensor type , Display is size() Method , for example ,
import numpy as np
from PIL import Image
from torchvision import transforms as T
# import matplotlib.image as Img
img = Image.open('4.jpg')
img_tran = T.Resize((512,256))(img)
print(img_tran.size) #(256, 512)
print(np.array(img_tran).shape) # (512, 256, 3)
img_to = T.ToTensor()(img_tran)
img_to_array = np.array(img_to)
print(img_to.size()) #torch.Size([3, 512, 256])
print(img_to_array.shape) # (3, 512, 256)
- It can be seen that size() Method shows that Channel comes first 了 .
Modify the function parameter order of image size
-T.Resize((H,W))(img)
- img.resize((W,H))、cv2.resize(img_read,(W,H))
Image Picture data and numpy Data conversion
Image Convert the picture to numpy data
np.array(img)
from PIL import Image
import numpy as np
img = Image.open('4.jpg')
img_array = np.array(img)
numpy Data to Image picture
Image.fromarray(img_arr.astype(‘uint8’))
Image.fromarray(np.uint8(img))
from PIL import Image
import numpy as np
img = Image.open('4.jpg')
img_array = np.array(img)
img_image = Image.fromarray(img_arr.astype('uint8'))
Image Dimension display and numpy Of shape Show problems
Image.size attribute It is shown that ** wide 、 high **
img_array.shape attribute , It is shown that ** high 、 wide 、 passageway **
from PIL import Image
from torchvision import transforms as T
import numpy as np
img = Image.open('4.jpg')
img_array = np.array(img)
print(img.size) # (720, 1160)
print(img_arr.shape) # (1160, 720, 3)
plt.figure()
plt.subplot(1,3,1)
plt.imshow(img)
plt.subplot(1,3,2)
plt.imshow(img_array)
plt.show()
img.resize(w, h),T.Resize((h,w))(img),cv2.resize(img,(w,h))
function : Modify the width and height of the read image size
import cv2
import matplotlib.image as Img
from torchvision import transforms as T
img = Image.open('4.jpg')
img_resize = img.resize((512,256))
img_tran = T.Resize((512,256))(img)
img_array = np.array(img)
img_read = cv2.imread('4.jpg')
img_cv2 = cv2.resize(img_read,(512,256))
print(img_resize.size) #(512, 256)
print(img_array.shape) #(1160, 720, 3)
print(img_tran.size) # (256, 512)
print(img_cv2.shape) # (256, 512, 3)
plt.figure()
plt.subplot(1,3,1)
plt.title('img_resize')
plt.imshow(img_resize)
plt.subplot(1,3,2)
plt.title('img_tran')
plt.imshow(img_tran)
plt.subplot(1,3,3)
plt.title('img_cv2')
plt.imshow(img_cv2)
plt.show()
边栏推荐
- Erc20 token agreement
- LDAP application (4) Jenkins access
- Zhong Xuegao, who cannot be melted, cannot escape the life cycle of online celebrity products
- 指针进阶---指针数组,数组指针
- Online yaml to CSV tool
- sublime text中conda环境中plt.show无法弹出显示图片的问题
- 电脑F1-F12用途
- 软件卸载时遇到trying to use is on a network resource that is unavailable
- Huawei cloud OBS file upload and download tool class
- 角色动画(Character Animation)的现状与趋势
猜你喜欢
随机推荐
Day29-t77 & t1726-2022-02-13-don't answer by yourself
China dihydrolaurenol market forecast and investment strategy report (2022 Edition)
Online yaml to CSV tool
JS pure function
JVM 快速入门
Image fusion -- challenges, opportunities and Countermeasures
同一局域网的手机和电脑相互访问,IIS设置
Function coritization
torch建立的网络模型使用torchviz显示
The ECU of 21 Audi q5l 45tfsi brushes is upgraded to master special adjustment, and the horsepower is safely and stably increased to 305 horsepower
What is the use of entering the critical point? How to realize STM32 single chip microcomputer?
【MySQL】锁
Image,cv2读取图片的numpy数组的转换和尺寸resize变化
Restore backup data on S3 compatible storage with tidb lightning
Migrate data from CSV files to tidb
Wincc7.5 download and installation tutorial (win10 system)
IoT -- 解读物联网四层架构
PLT in Matplotlib tight_ layout()
如何进行接口测试测?有哪些注意事项?保姆级解读
指针进阶---指针数组,数组指针