当前位置:网站首页>Image, CV2 read the conversion and size resize change of numpy array of pictures
Image, CV2 read the conversion and size resize change of numpy array of pictures
2022-07-06 08:32:00 【MAR-Sky】
Several image size modifications and parameter summaries
(from torchvision import transforms as T)
Display different size formats
- Image The type and T Conduct resize The picture of size attribute The order of display parameters is W、H
- cv2 Display of Of shape The order of display parameters is H、W、C
- T.ToTensor()(img), Convert the picture to tensor type , Display is size() Method , for example ,
import numpy as np
from PIL import Image
from torchvision import transforms as T
# import matplotlib.image as Img
img = Image.open('4.jpg')
img_tran = T.Resize((512,256))(img)
print(img_tran.size) #(256, 512)
print(np.array(img_tran).shape) # (512, 256, 3)
img_to = T.ToTensor()(img_tran)
img_to_array = np.array(img_to)
print(img_to.size()) #torch.Size([3, 512, 256])
print(img_to_array.shape) # (3, 512, 256)
- It can be seen that size() Method shows that Channel comes first 了 .
Modify the function parameter order of image size
-T.Resize((H,W))(img)
- img.resize((W,H))、cv2.resize(img_read,(W,H))

Image Picture data and numpy Data conversion
Image Convert the picture to numpy data
np.array(img)
from PIL import Image
import numpy as np
img = Image.open('4.jpg')
img_array = np.array(img)
numpy Data to Image picture
Image.fromarray(img_arr.astype(‘uint8’))
Image.fromarray(np.uint8(img))
from PIL import Image
import numpy as np
img = Image.open('4.jpg')
img_array = np.array(img)
img_image = Image.fromarray(img_arr.astype('uint8'))
Image Dimension display and numpy Of shape Show problems
Image.size attribute It is shown that ** wide 、 high **
img_array.shape attribute , It is shown that ** high 、 wide 、 passageway **
from PIL import Image
from torchvision import transforms as T
import numpy as np
img = Image.open('4.jpg')
img_array = np.array(img)
print(img.size) # (720, 1160)
print(img_arr.shape) # (1160, 720, 3)
plt.figure()
plt.subplot(1,3,1)
plt.imshow(img)
plt.subplot(1,3,2)
plt.imshow(img_array)
plt.show()

img.resize(w, h),T.Resize((h,w))(img),cv2.resize(img,(w,h))
function : Modify the width and height of the read image size
import cv2
import matplotlib.image as Img
from torchvision import transforms as T
img = Image.open('4.jpg')
img_resize = img.resize((512,256))
img_tran = T.Resize((512,256))(img)
img_array = np.array(img)
img_read = cv2.imread('4.jpg')
img_cv2 = cv2.resize(img_read,(512,256))
print(img_resize.size) #(512, 256)
print(img_array.shape) #(1160, 720, 3)
print(img_tran.size) # (256, 512)
print(img_cv2.shape) # (256, 512, 3)
plt.figure()
plt.subplot(1,3,1)
plt.title('img_resize')
plt.imshow(img_resize)
plt.subplot(1,3,2)
plt.title('img_tran')
plt.imshow(img_tran)
plt.subplot(1,3,3)
plt.title('img_cv2')
plt.imshow(img_cv2)
plt.show()
边栏推荐
- 根据csv文件某一列字符串中某个数字排序
- China polyether amine Market Forecast and investment strategy report (2022 Edition)
- MySQL learning record 07 index (simple understanding)
- Beijing invitation media
- JVM performance tuning and practical basic theory - Part 1
- Research Report on Market Research and investment strategy of microcrystalline graphite materials in China (2022 Edition)
- Cisp-pte practice explanation
- Grayscale upgrade tidb operator
- Permutation and combination function
- 优秀的软件测试人员,都具备这些能力
猜你喜欢
![[MySQL] log](/img/e9/1617122888c096cf6aba2bdb88f0ef.png)
[MySQL] log

The ECU of 21 Audi q5l 45tfsi brushes is upgraded to master special adjustment, and the horsepower is safely and stably increased to 305 horsepower

Leetcode question brushing (5.28) hash table

leetcode刷题 (5.28) 哈希表

PLT in Matplotlib tight_ layout()

深度剖析C语言数据在内存中的存储

What is the use of entering the critical point? How to realize STM32 single chip microcomputer?

JS inheritance method
![[secretly kill little partner pytorch20 days -day01- example of structured data modeling process]](/img/ae/4e616882f6d68acdf8e885843e68a3.jpg)
[secretly kill little partner pytorch20 days -day01- example of structured data modeling process]

visdom可视化实现与检查介绍
随机推荐
Report on Market Research and investment prospects of China's silver powder industry (2022 Edition)
Personalized online cloud database hybrid optimization system | SIGMOD 2022 selected papers interpretation
Upgrade tidb with tiup
sublime text中conda环境中plt.show无法弹出显示图片的问题
VMware 虚拟化集群
FairGuard游戏加固:游戏出海热潮下,游戏安全面临新挑战
Grayscale upgrade tidb operator
LDAP應用篇(4)Jenkins接入
Char to leading 0
Cisp-pte practice explanation
【MySQL】锁
China dihydrolaurenol market forecast and investment strategy report (2022 Edition)
软件卸载时遇到trying to use is on a network resource that is unavailable
Deep learning: derivation of shallow neural networks and deep neural networks
CISP-PTE实操练习讲解
JS inheritance method
JS native implementation shuttle box
Verrouillage [MySQL]
Research Report on supply and demand and development prospects of China's high purity aluminum market (2022 Edition)
sys.argv