当前位置:网站首页>[combinatorics] exponential generating function (example 2 of solving multiple set permutation with exponential generating function)
[combinatorics] exponential generating function (example 2 of solving multiple set permutation with exponential generating function)
2022-07-03 18:20:00 【Programmer community】
List of articles
- One 、 Example of solving multiple set permutation with exponential generating function 2
Reference blog : Look in order
- 【 Combinatorial mathematics 】 Generating function Brief introduction ( Generating function definition | Newton's binomial coefficient | Common generating functions | Related to constants | Related to binomial coefficient | Related to polynomial coefficients )
- 【 Combinatorial mathematics 】 Generating function ( Linear properties | Product properties )
- 【 Combinatorial mathematics 】 Generating function ( Shift property )
- 【 Combinatorial mathematics 】 Generating function ( The nature of summation )
- 【 Combinatorial mathematics 】 Generating function ( Commutative properties | Derivative property | Integral properties )
- 【 Combinatorial mathematics 】 Generating function ( Summary of nature | Important generating functions ) *
- 【 Combinatorial mathematics 】 Generating function ( Generate function examples | Given the general term formula, find the generating function | Given the generating function, find the general term formula )
- 【 Combinatorial mathematics 】 Generating function ( Generate function application scenarios | Solving recursive equations using generating functions )
- 【 Combinatorial mathematics 】 Generating function ( Use the generating function to solve multiple sets r Combinatorial number )
- 【 Combinatorial mathematics 】 Generating function ( Use generating function to solve the number of solutions of indefinite equation )
- 【 Combinatorial mathematics 】 Generating function ( Examples of using generating functions to solve the number of solutions of indefinite equations )
- 【 Combinatorial mathematics 】 Generating function ( Examples of using generating functions to solve the number of solutions of indefinite equations 2 | Extended to integer solutions )
- 【 Combinatorial mathematics 】 Generating function ( Positive integer split | disorder | Orderly | Allow repetition | No repetition | Unordered and unrepeated splitting | Unordered repeated split )
- 【 Combinatorial mathematics 】 Generating function ( Positive integer split | Unordered non repeated split example )
- 【 Combinatorial mathematics 】 Generating function ( Positive integer split | Basic model of positive integer splitting | Disorderly splitting with restrictions )
- 【 Combinatorial mathematics 】 Generating function ( Positive integer split | Repeated ordered splitting | Do not repeat orderly splitting | Proof of the number of repeated ordered splitting schemes )
- 【 Combinatorial mathematics 】 Exponential generating function ( The concept of exponential generating function | Permutation number exponential generating function = General generating function of combinatorial number | Example of exponential generating function )
- 【 Combinatorial mathematics 】 Exponential generating function ( Properties of exponential generating function | The exponential generating function solves the arrangement of multiple sets )
- 【 Combinatorial mathematics 】 Exponential generating function ( Example of solving multiple set permutation with exponential generating function )
One 、 Example of solving multiple set permutation with exponential generating function 2
Use white Red Blue Coloring
n
n
n Lattice , The number of white colors is even , Find the number of coloring schemes
This is a The problem of permutation , When different squares are colored and exchanged , It becomes a different solution ,
Red , Blue Coloring , There is no limit to , The number of colors can be
0
,
1
,
2
,
3
,
4
,
⋯
0, 1,2,3,4,\cdots
0,1,2,3,4,⋯
white Coloring , The number of colors is even , The number of colors is
0
,
2
,
4
,
6
,
8
,
⋯
0, 2, 4, 6, 8 , \cdots
0,2,4,6,8,⋯
Red , Blue Number of colors
0
,
1
,
2
,
3
,
4
,
⋯
0, 1,2,3,4,\cdots
0,1,2,3,4,⋯ Sequence , The corresponding generating function item is :
x
0
0
!
+
x
1
1
!
+
x
2
2
!
⋯
=
1
+
x
+
x
2
2
!
+
⋯
\cfrac{x^0}{0!} + \cfrac{x^1}{1!} + \cfrac{x^2}{2!} \cdots = 1 + x + \cfrac{x^2}{2!} + \cdots
0!x0+1!x1+2!x2⋯=1+x+2!x2+⋯
white Number of colors
0
,
2
,
4
,
6
,
8
,
⋯
0, 2, 4, 6, 8 , \cdots
0,2,4,6,8,⋯ Sequence , The corresponding generating function item is :
x
0
0
!
+
x
2
2
!
+
x
4
4
!
⋯
=
1
+
x
2
2
!
+
x
4
4
!
+
⋯
\cfrac{x^0}{0!} + \cfrac{x^2}{2!} + \cfrac{x^4}{4!} \cdots = 1+ \cfrac{x^2}{2!} + \cfrac{x^4}{4!} + \cdots
0!x0+2!x2+4!x4⋯=1+2!x2+4!x4+⋯
The exponential generating function of the number of the above coloring schemes is :
G
e
(
x
)
=
(
1
+
x
+
x
2
2
!
+
⋯
)
(
1
+
x
+
x
2
2
!
+
⋯
)
(
1
+
x
2
2
!
+
x
4
4
!
+
⋯
)
G_e(x) = (1 + x + \cfrac{x^2}{2!} + \cdots) (1 + x + \cfrac{x^2}{2!} + \cdots) (1+ \cfrac{x^2}{2!} + \cfrac{x^4}{4!} + \cdots)
Ge(x)=(1+x+2!x2+⋯)(1+x+2!x2+⋯)(1+2!x2+4!x4+⋯)
among
1
+
x
+
x
2
2
!
+
⋯
1 + x + \cfrac{x^2}{2!} + \cdots
1+x+2!x2+⋯ Sure It's written in
e
x
e^x
ex form ;
among
1
+
x
2
2
!
+
x
4
4
!
+
⋯
1+ \cfrac{x^2}{2!} + \cfrac{x^4}{4!} + \cdots
1+2!x2+4!x4+⋯ We can write it in the following form :
1
+
x
2
2
!
+
x
4
4
!
+
⋯
=
1
2
(
e
x
+
e
−
x
)
1+ \cfrac{x^2}{2!} + \cfrac{x^4}{4!} + \cdots = \cfrac{1}{2}(e^x + e^{-x})
1+2!x2+4!x4+⋯=21(ex+e−x)
e
x
+
e
−
x
e^x + e^{-x}
ex+e−x Add up , The sign of odd power is opposite , Direct appointment , Even power Double the original , So multiply it outside
1
2
\cfrac{1}{2}
21 ;
Put the above
e
x
e^x
ex and
1
2
(
e
x
+
e
−
x
)
\cfrac{1}{2}(e^x + e^{-x})
21(ex+e−x) Replace the Exponential generating function ;
G
e
(
x
)
=
(
1
+
x
+
x
2
2
!
+
⋯
)
(
1
+
x
+
x
2
2
!
+
⋯
)
(
1
+
x
2
2
!
+
x
4
4
!
+
⋯
)
G_e(x) = (1 + x + \cfrac{x^2}{2!} + \cdots) (1 + x + \cfrac{x^2}{2!} + \cdots) (1+ \cfrac{x^2}{2!} + \cfrac{x^4}{4!} + \cdots)
Ge(x)=(1+x+2!x2+⋯)(1+x+2!x2+⋯)(1+2!x2+4!x4+⋯)
=
1
2
(
e
x
+
e
−
x
)
(
e
x
)
(
e
x
)
\ \ \ \ \ \ \ \ \ \ \ \, =\cfrac{1}{2}(e^x + e^{-x})(e^x )(e^x)
=21(ex+e−x)(ex)(ex)
=
1
2
e
3
x
+
1
2
e
x
\ \ \ \ \ \ \ \ \ \ \ \, =\cfrac{1}{2}e^{3x} + \cfrac{1}{2}e^{x}
=21e3x+21ex
take
1
2
e
x
\cfrac{1}{2}e^{x}
21ex Expand to
1
2
(
1
+
x
+
x
2
2
!
+
⋯
)
=
1
2
∑
n
=
0
∞
x
n
n
!
\cfrac{1}{2}(1 + x + \cfrac{x^2}{2!} + \cdots)=\cfrac{1}{2}\sum\limits_{n=0}^\infty \cfrac{x^n}{n!}
21(1+x+2!x2+⋯)=21n=0∑∞n!xn
take
1
2
e
3
x
\cfrac{1}{2}e^{3x}
21e3x Expand to
1
2
(
1
+
3
x
+
(
3
x
)
2
2
!
+
⋯
)
=
1
2
∑
n
=
0
∞
3
n
x
n
n
!
\cfrac{1}{2}(1 + 3x + \cfrac{(3x)^2}{2!} + \cdots)=\cfrac{1}{2}\sum\limits_{n=0}^\infty \cfrac{3^nx^n}{n!}
21(1+3x+2!(3x)2+⋯)=21n=0∑∞n!3nxn
=
1
2
∑
n
=
0
∞
3
n
x
n
n
!
+
1
2
∑
n
=
0
∞
x
n
n
!
\ \ \ \ \ \ \ \ \ \ \ \, =\cfrac{1}{2}\sum\limits_{n=0}^\infty \cfrac{3^nx^n}{n!} + \cfrac{1}{2}\sum\limits_{n=0}^\infty \cfrac{x^n}{n!}
=21n=0∑∞n!3nxn+21n=0∑∞n!xn
=
∑
n
=
0
∞
3
n
+
1
2
⋅
x
n
n
!
\ \ \ \ \ \ \ \ \ \ \ \, =\sum\limits_{n=0}^\infty \cfrac{3^n + 1}{2} \cdot \cfrac{x^n}{n!}
=n=0∑∞23n+1⋅n!xn
x
n
n
!
\cfrac{x^n}{n!}
n!xn The coefficient before is
3
n
+
1
2
\cfrac{3^n + 1}{2}
23n+1
therefore white Red Blue Coloring
n
n
n Lattice , White is even , The coloring scheme has
3
n
+
1
2
\cfrac{3^n + 1}{2}
23n+1 Kind of ;
边栏推荐
- Class exercises
- Naoqi robot summary 27
- [combinatorics] generating function (positive integer splitting | unordered | ordered | allowed repetition | not allowed repetition | unordered not repeated splitting | unordered repeated splitting)
- Kotlin的协程:上下文
- [combinatorics] generating function (use generating function to solve the number of solutions of indefinite equation example 2 | extended to integer solution)
- Redis core technology and practice - learning notes (11): why not just string
- Golang string (string) and byte array ([]byte) are converted to each other
- 基于人脸识别的课堂考勤系统 tkinter+openpyxl+face_recognition
- [combinatorics] generating function (commutative property | derivative property | integral property)
- PHP MySQL reads data
猜你喜欢
2022-2028 global physiotherapy clinic industry research and trend analysis report
一入“远程”终不悔,几人欢喜几人愁。| 社区征文
Redis core technology and practice - learning notes (VI) how to achieve data consistency between master and slave Libraries
网格图中递增路径的数目[dfs逆向路径+记忆dfs]
Computer graduation design PHP makeup sales Beauty shopping mall
Mature port AI ceaspectus leads the world in the application of AI in terminals, CIMC Feitong advanced products go global, smart terminals, intelligent ports, intelligent terminals
Computer graduation project PHP library book borrowing management system
Module 9 operation
SQL injection -day16
[Godot] add menu button
随机推荐
Redis on local access server
Grammaire anglaise Nom - Classification
WebView module manages the application window interface to realize the logical control and management operation of multiple windows (Part 1)
Codeforces Round #803 (Div. 2) C. 3SUM Closure
English grammar_ Adjective / adverb Level 3 - multiple expression
聊聊支付流程的设计与实现逻辑
PHP MySQL create database
Count the number of pixel values in the image
Keepalived 设置不抢占资源
2022-2028 global solid phase extraction column industry research and trend analysis report
win32:堆破坏的dump文件分析
[combinatorics] exponential generating function (concept of exponential generating function | permutation number exponential generating function = combinatorial number ordinary generating function | e
Kotlin's collaboration: Context
Install apache+php+mysql+phpmyadmin xampp and its error resolution
2022-2028 global sepsis treatment drug industry research and trend analysis report
[untitled]
Prototype inheritance..
Image 24 bits de profondeur à 8 bits de profondeur
supervisor监控Gearman任务
A. Berland Poker &1000【简单数学思维】