当前位置:网站首页>[combinatorics] generating function (positive integer splitting | repeated ordered splitting | non repeated ordered splitting | proof of the number of repeated ordered splitting schemes)
[combinatorics] generating function (positive integer splitting | repeated ordered splitting | non repeated ordered splitting | proof of the number of repeated ordered splitting schemes)
2022-07-03 18:12:00 【Programmer community】
List of articles
- One 、 Repeated ordered splitting
- Two 、 Do not repeat orderly splitting
- 1、 Unordered split basic model
- 2、 Full Permutation
- 3、 ... and 、 Proof of the number of repeated ordered splitting schemes
Reference blog : Look in order
- 【 Combinatorial mathematics 】 Generating function Brief introduction ( Generating function definition | Newton's binomial coefficient | Common generating functions | Related to constants | Related to binomial coefficient | Related to polynomial coefficients )
- 【 Combinatorial mathematics 】 Generating function ( Linear properties | Product properties )
- 【 Combinatorial mathematics 】 Generating function ( Shift property )
- 【 Combinatorial mathematics 】 Generating function ( The nature of summation )
- 【 Combinatorial mathematics 】 Generating function ( Commutative properties | Derivative property | Integral properties )
- 【 Combinatorial mathematics 】 Generating function ( Summary of nature | Important generating functions ) *
- 【 Combinatorial mathematics 】 Generating function ( Generate function examples | Given the general term formula, find the generating function | Given the generating function, find the general term formula )
- 【 Combinatorial mathematics 】 Generating function ( Generate function application scenarios | Solving recursive equations using generating functions )
- 【 Combinatorial mathematics 】 Generating function ( Use the generating function to solve multiple sets r Combinatorial number )
- 【 Combinatorial mathematics 】 Generating function ( Use generating function to solve the number of solutions of indefinite equation )
- 【 Combinatorial mathematics 】 Generating function ( Examples of using generating functions to solve the number of solutions of indefinite equations )
- 【 Combinatorial mathematics 】 Generating function ( Examples of using generating functions to solve the number of solutions of indefinite equations 2 | Extended to integer solutions )
- 【 Combinatorial mathematics 】 Generating function ( Positive integer split | disorder | Orderly | Allow repetition | No repetition | Unordered and unrepeated splitting | Unordered repeated split )
- 【 Combinatorial mathematics 】 Generating function ( Positive integer split | Unordered non repeated split example )
- 【 Combinatorial mathematics 】 Generating function ( Positive integer split | Basic model of positive integer splitting | Disorderly splitting with restrictions )
One 、 Repeated ordered splitting
take Positive integer
N
N
N Repeatedly , Orderly splitting become
r
r
r part , The number of programmes is
C
(
N
−
1
,
r
−
1
)
C(N-1, r-1)
C(N−1,r−1) *
( 3、 ... and 、 The combination number is proved in )
If the Positive integer
N
N
N do Arbitrary repeated ordered splitting , It can be split into
1
1
1 Number ,
2
2
2 Number ,
⋯
\cdots
⋯ ,
N
N
N Number ,
Split into
1
1
1 The number of schemes is
(
N
−
1
1
−
1
)
\dbinom{N-1}{1-1}
(1−1N−1)
Split into
2
2
2 The number of schemes is
(
N
−
1
2
−
1
)
\dbinom{N-1}{2-1}
(2−1N−1)
⋮
\vdots
⋮
Split into
N
N
N The number of schemes is
(
N
−
1
N
−
1
)
\dbinom{N-1}{N-1}
(N−1N−1)
The total number of schemes mentioned above is :
∑
r
=
1
N
=
2
N
−
1
\sum\limits_{r=1}^{N}=2^{N-1}
r=1∑N=2N−1
( It is calculated according to the basic combinatorial identity )
Two 、 Do not repeat orderly splitting
to Do not repeat unordered splitting , Proceed again Full Permutation ;
1、 Unordered split basic model
Unordered split basic model :
take Positive integer
N
N
N Unordered split into positive integers ,
a
1
,
a
2
,
⋯
,
a
n
a_1, a_2, \cdots , a_n
a1,a2,⋯,an It is a split
n
n
n Number ,
The split is unordered , Split above
n
n
n The number of numbers may be different ,
hypothesis
a
1
a_1
a1 Yes
x
1
x_1
x1 individual ,
a
2
a_2
a2 Yes
x
2
x_2
x2 individual ,
⋯
\cdots
⋯ ,
a
n
a_n
an Yes
x
n
x_n
xn individual , Then there is the following equation :
a
1
x
1
+
a
2
x
2
+
⋯
+
a
n
x
n
=
N
a_1x_1 + a_2x_2 + \cdots + a_nx_n = N
a1x1+a2x2+⋯+anxn=N
This form can be used Number of nonnegative integer solutions of indefinite equation Generation function calculation of , yes With coefficients , With restrictions , Reference resources : Combinatorial mathematics 】 Generating function ( Use generating function to solve the number of solutions of indefinite equation )
In the case of unordered splitting , A positive integer after splitting , Allow repetition and No repetition , It is two kinds of combinatorial problems ;
If No repetition , So these
x
i
x_i
xi The value of , Can only Value
0
,
1
0, 1
0,1 ; amount to With restrictions , With coefficients Of Nonnegative integer solutions of indefinite equations The situation of ;
The corresponding generating function is :
G
(
x
)
=
(
1
+
y
a
1
)
(
1
+
y
a
2
)
⋯
(
1
+
y
a
n
)
G(x) = (1+ y^{a_1}) (1+ y^{a_2}) \cdots (1+ y^{a_n})
G(x)=(1+ya1)(1+ya2)⋯(1+yan) * Focus on here
If Allow repetition , So these
x
i
x_i
xi The value of , Namely Natural number ; amount to With coefficients Of Nonnegative integer solutions of indefinite equations The situation of ;
The corresponding generating function is :
G
(
x
)
=
(
1
+
y
a
1
+
y
2
a
1
⋯
)
(
1
+
y
a
2
+
y
2
a
2
⋯
)
⋯
(
1
+
y
a
n
+
y
2
a
n
⋯
)
G(x) = (1+ y^{a_1}+ y^{2a_1}\cdots) (1+ y^{a_2} + y^{2a_2}\cdots) \cdots (1+ y^{a_n}+ y^{2a_n}\cdots )
G(x)=(1+ya1+y2a1⋯)(1+ya2+y2a2⋯)⋯(1+yan+y2an⋯)
or
G
(
x
)
=
1
(
1
−
y
a
1
)
(
1
−
y
a
2
)
⋯
(
1
−
y
a
n
)
G(x) =\cfrac{1}{ (1-y^{a_1}) (1-y^{a_2}) \cdots (1-y^{a_n}) }
G(x)=(1−ya1)(1−ya2)⋯(1−yan)1
2、 Full Permutation
n
n
n The whole permutation is
n
!
n!
n!
n
n
n Meta set
S
S
S , from
S
S
S Select... From the set
r
r
r Elements ;
according to Whether the element can be repeated , Whether the selection process is orderly , The selection question is divided into four sub types :
| Elements do not repeat | Elements can be repeated | |
|---|---|---|
| Orderly selection | Set arrangement P ( n , r ) P(n,r) P(n,r) | Multiset arrangement |
| Unordered selection | Set combination C ( n , r ) C(n,r) C(n,r) | Combination of multiple sets |
Select the question :
- Non repeatable elements , Orderly selection , Corresponding Arrangement of sets ;
P
(
n
,
r
)
=
n
!
(
n
−
r
)
!
P(n,r) = \dfrac{n!}{(n-r)!}
P(n,r)=(n−r)!n!
- Non repeatable elements , Unordered selection , Corresponding A combination of sets ;
C
(
n
,
r
)
=
P
(
n
,
r
)
r
!
=
n
!
r
!
(
n
−
r
)
!
C(n,r) = \dfrac{P(n,r)}{r!} = \dfrac{n!}{r!(n-r)!}
C(n,r)=r!P(n,r)=r!(n−r)!n!
- Repeatable elements , Orderly selection , Corresponding Arrangement of multiple sets ;
whole
row
Column
=
n
!
n
1
!
n
2
!
⋯
n
k
!
Full Permutation = \cfrac{n!}{n_1! n_2! \cdots n_k!}
whole row Column =n1!n2!⋯nk!n! , Incomplete permutation
k
r
,
r
≤
n
i
k^r , \ \ r\leq n_i
kr, r≤ni
- Repeatable elements , Unordered selection , Corresponding Combination of multiple sets ;
N
=
C
(
k
+
r
−
1
,
r
)
N= C(k + r - 1, r)
N=C(k+r−1,r)
3、 ... and 、 Proof of the number of repeated ordered splitting schemes
Use a one-to-one correspondence method to prove : take Positive integer
N
N
N Repeatedly , Orderly splitting become
r
r
r part , The number of programmes is
C
(
N
−
1
,
r
−
1
)
C(N-1, r-1)
C(N−1,r−1) *
A positive integer after splitting , If the order is changed , The arrangement is different , The number of schemes it represents is also different ;
Convert this split into a combinatorial counting problem ;
hypothesis
N
=
a
1
+
a
2
+
⋯
+
a
r
N=a_1 + a_2 + \cdots + a_r
N=a1+a2+⋯+ar Is a split that meets the conditions , This split repeat , Orderly ;
Put the above scheme , Make a partial sequence ,
Split plan And Split sequence :
Write the splitting sequence according to the splitting scheme :
The original plan
6
=
1
+
2
+
3
6=1+2+3
6=1+2+3 , Make a partial sequence from the original scheme ,
The first sequence
S
1
=
1
S_1 = 1
S1=1 , Take the first component of the original scheme
1
1
1 come out ,
The second sequence
S
2
=
1
+
2
=
3
S_2 = 1 + 2 = 3
S2=1+2=3 , Take the first two components of the original scheme
1
+
2
1 + 2
1+2 come out ,
The third sequence
S
3
=
1
+
2
+
3
=
6
S_3 = 1 + 2 + 3 = 6
S3=1+2+3=6 , Take the first three components of the original scheme
1
+
2
+
3
1 + 2 + 3
1+2+3 come out ,
The first sequence is the first number , The second sequence is the first two numbers , The first
n
n
n The first sequence is the first
n
n
n Number , The last sequence contains all split positive integers ;
Just give an original plan , You can make the above partial sequence ;
As long as the plan is the same , The sequence is exactly the same , The plan is different , The sequence must be different ;
Write the splitting scheme according to the splitting sequence :
conversely , Given a sequence , Sure Restore a splitting scheme , If the sequence is given
S
1
=
1
,
S
2
=
3
,
S
3
=
6
S_1 = 1 , S_2=3, S_3=6
S1=1,S2=3,S3=6 , Corresponding splitting scheme :
The sum of all numbers in the last sequence , The split positive integer is the value of the last sequence
6
6
6
The first positive integer Is the first sequence
1
1
1
The second positive integer Is the second sequence minus the first sequence
S
2
−
S
1
=
3
−
1
=
2
S_2 - S_1 = 3-1=2
S2−S1=3−1=2
The third positive integer Is the third sequence minus the second sequence
S
3
−
S
2
=
6
−
3
=
3
S_3-S_2=6-3=3
S3−S2=6−3=3
The splitting scheme is
6
=
1
+
2
+
3
6 = 1+2+3
6=1+2+3
N
=
a
1
+
a
2
+
⋯
+
a
r
N=a_1 + a_2 + \cdots + a_r
N=a1+a2+⋯+ar The split sequence of is
S
1
=
a
1
S_1 = a_1
S1=a1
S
2
=
a
1
+
a
2
S_2= a_1 + a_2
S2=a1+a2
S
3
=
a
1
+
a
2
+
a
3
S_3= a_1 + a_2 + a_3
S3=a1+a2+a3
⋮
\vdots
⋮
S
i
=
a
1
+
a
2
+
a
3
+
⋯
+
a
i
=
∑
k
=
1
t
a
i
,
i
=
1
,
2
,
3
,
⋯
S_i= a_1 + a_2 + a_3 + \cdots + a_i = \sum\limits_{k=1}^ta_i\ , \ \ \ \ \ i=1,2,3, \cdots
Si=a1+a2+a3+⋯+ai=k=1∑tai , i=1,2,3,⋯
The above split sequence must have the following properties :
0
<
S
1
<
S
2
<
⋯
<
S
r
=
N
0 < S_1 < S_2 < \cdots < S_r = N
0<S1<S2<⋯<Sr=N
because
S
2
S_2
S2 Must be
S
1
S_1
S1 Add a positive integer ,
S
r
S_r
Sr Must be
S
r
−
1
S_{r-1}
Sr−1 Add a positive integer , The last item is all
r
r
r Sum of positive integers , Is a positive integer split
N
N
N ;
The above split sequence
S
1
,
S
2
,
⋯
,
S
r
S_1, S_2, \cdots , S_r
S1,S2,⋯,Sr , Last number
S
r
=
N
S_r = N
Sr=N ,
The last number doesn't matter , Ahead
r
−
1
r-1
r−1 The value range of the number is
1
,
2
,
3
,
⋯
,
N
−
1
1, 2, 3, \cdots , N-1
1,2,3,⋯,N−1 , Within the above value range Yes
n
−
1
n-1
n−1 A positive integer ;
from
n
−
1
n-1
n−1 In a positive integer , selection
r
−
1
r-1
r−1 A positive integer ,
therefore , take Positive integer
N
N
N Repeatedly , Orderly splitting become
r
r
r part , The number of programmes is
C
(
N
−
1
,
r
−
1
)
C(N-1, r-1)
C(N−1,r−1) *
边栏推荐
- AcWing 271. 杨老师的照相排列【多维DP】
- Gear2021 monthly update - December
- 一入“远程”终不悔,几人欢喜几人愁。| 社区征文
- PUT vs. POST for Uploading Files - RESTful API to be Built Using Zend Framework
- Prototype inheritance..
- PHP MySQL where clause
- [Tongxin UOS] scanner device management driver installation
- Codeforces Round #803 (Div. 2) C. 3SUM Closure
- Embedded-c language-7
- Supervisor monitors gearman tasks
猜你喜欢

MySQL grouping query

win32:堆破坏的dump文件分析

模块九作业

English grammar_ Noun classification

Codeforces Round #803 (Div. 2) C. 3SUM Closure

Should I be laid off at the age of 40? IBM is suspected of age discrimination, calling its old employees "dinosaurs" and planning to dismiss, but the employees can't refute it

Research on Swift

面试官:值为 nil 为什么不等于 nil ?

Class exercises
![[untitled]](/img/83/5a57ed90aaafde94db600246256867.jpg)
[untitled]
随机推荐
分布式的任务分发框架-Gearman
Research on Swift
Prototype inheritance..
Managing multiple selections with MVVM - managing multiple selections with MVVM
毕业总结
Micro service component sentinel console call
Win32: dump file analysis of heap corruption
A. Berland Poker & 1000 [simple mathematical thinking]
Kotlin的协程:上下文
Discussion sur la logique de conception et de mise en oeuvre du processus de paiement
Image 24 bit depth to 8 bit depth
SQL injection -day16
How to deploy applications on kubernetes cluster
PHP MySQL create database
A. Berland Poker &1000【简单数学思维】
Golang string (string) and byte array ([]byte) are converted to each other
The vscode code is automatically modified to a compliance code when it is formatted and saved
Valentine's day, send you a little red flower~
Image 24 bits de profondeur à 8 bits de profondeur
Change the single node of Postgres database into master-slave