当前位置:网站首页>【九阳神功】2017复旦大学应用统计真题+解析
【九阳神功】2017复旦大学应用统计真题+解析
2022-07-06 09:20:00 【大师兄统计】
真题部分
一、(30分) 名词解释
(1)(5分) 样本均值、样本方差;
(2)(5分) 统计量;
(3)(5分) 次序统计量;
(4)(5分) 中位数、样本中位数;
(5)(5分) 经验分布函数;
(6)(5分) 无偏估计.
二、(20分) X 1 , X 2 , X_{1}, X_{2}, X1,X2, i.i.d ∼ Exp ( 1 ) , \sim \operatorname{Exp}(1), ∼Exp(1), 求
(1)(10分) X 1 X 1 + X 2 \frac{X_{1}}{X_{1}+X_{2}} X1+X2X1的密度函数;
(2)(10分) X ( 2 ) − X ( 1 ) X_{(2)}-X_{(1)} X(2)−X(1) 的密度函数.
三、(20分) X 1 , X 2 X_{1}, X_{2} X1,X2 i.i.d. ∼ N ( 0 , 1 ) , \sim N(0,1), ∼N(0,1), 求 X 1 X 2 \frac{X_{1}}{X_{2}} X2X1的概率分布.
四、(20分) X 1 , X 2 , … , X n X_{1}, X_{2}, \ldots, X_{n} X1,X2,…,Xn i.i.d. ∼ F ( x ) , \sim F(x), ∼F(x), 记 Y n ( x ) = ∑ i = 1 n I [ X i ≤ x ] , Y_{n}(x)=\sum_{i=1}^{n} I\left[X_{i} \leq x\right], Yn(x)=∑i=1nI[Xi≤x], 求 lim n → ∞ Y n ( x ) n \lim _{n \rightarrow \infty} \frac{Y_{n}(x)}{n} limn→∞nYn(x).
五、(20分) X 0 , X 1 , ⋯ , X 2 n , X_{0}, X_{1}, \cdots, X_{2 n}, X0,X1,⋯,X2n, i.i.d ∼ U ( 0 , 1 ) , X ( 0 ) , X ( 1 ) , ⋯ , X ( 2 n ) \sim U(0,1), \quad X_{(0)}, X_{(1)}, \cdots, X_{(2 n)} ∼U(0,1),X(0),X(1),⋯,X(2n)为对应的次序统计量, 试证明 X ( n ) → P 1 2 X_{(n)} \stackrel{P}{\rightarrow} \frac{1}{2} X(n)→P21.
六、(20分) 已知连续型随机变量 X X X的期望 E X E X EX存在, f ( t ) = E ∣ X − t ∣ f(t)=E|X-t| f(t)=E∣X−t∣在 t = m t=m t=m时取极小值, 证明 P ( X ≤ m ) = 1 2 P(X \leq m)=\frac{1}{2} P(X≤m)=21.
七、(20分) X 1 , X 2 , X 3 X_{1}, X_{2}, X_{3} X1,X2,X3 i.i.d ∼ N ( 0 , 1 ) , \sim N(0,1), ∼N(0,1), 求
(1)(10分) P ( X 1 > X 2 > X 3 ) P\left(X_{1}>X_{2}>X_{3}\right) P(X1>X2>X3);
(2)(10分) P ( X 1 > X 2 , X 1 > X 3 ) P\left(X_{1}>X_{2}, X_{1}>X_{3}\right) P(X1>X2,X1>X3).
解析部分
一、(30分) 名词解释
(1)(5分) 样本均值、样本方差;
(2)(5分) 统计量;
(3)(5分) 次序统计量;
(4)(5分) 中位数、样本中位数;
(5)(5分) 经验分布函数;
(6)(5分) 无偏估计.
Solution: (1) 样本均值是在某个特定总体中抽取 n n n 个独立随机样木, 计算得到的平均值, 记作 X ˉ = 1 n ∑ i = 1 n X i \bar{X}=\frac{1}{n} \sum_{i=1}^{n} X_{i} Xˉ=n1∑i=1nXi, 如果总体的期望存在, 则 X ˉ \bar{X} Xˉ是总体期望的强相合估计. 样本方差则是利用该 n n n个独立随机样本计算的修正平均离差平方, 修正的意思是取平均时除以的是其自由度 n − 1 n-1 n−1而并非数据个数 n n n, 样本方差一般记作 S 2 = 1 n − 1 ∑ i = 1 n ( X i − X ˉ ) 2 S^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2} S2=n−11∑i=1n(Xi−Xˉ)2, 如果总体的方差存在, 则 S 2 S^{2} S2也是总体方差的强相合估计.
(2) 统计量是指其表达式中只含样本而不含末知参数的函数, 本质上是随机变量(向量),当然在随机样本的取值给定时, 统计量也可以被看作一个已知的常数(常向量), 这时统计量就是“统计量的观测值”的简称.
(3) 次序统计量是指将随机样本 X 1 , X 2 , … , X n X_{1}, X_{2}, \ldots, X_{n} X1,X2,…,Xn 重新由小到大排列成的统计量, 一般由小到大记作 X ( 1 ) , X ( 2 ) , … , X ( n ) X_{(1)}, X_{(2)}, \ldots, X_{(n)} X(1),X(2),…,X(n).
(4) 如果 x 0.5 x_{0.5} x0.5 满足 P { X ≤ x 0.5 } = 0.5 P\left\{X \leq x_{0.5}\right\}=0.5 P{ X≤x0.5}=0.5 则称 x 0.5 x_{0.5} x0.5为中位数. 而样本中位数 m 0.5 m_{0.5} m0.5则是指取到的随机样本中位于中间的数, 若用次序统计量表示就是 m 0.5 = { x ( n + 1 2 ) , n = 奇数, x ( n 2 ) + x ( n 2 + 1 ) 2 , n = 偶数. m_{0.5}= \begin{cases}x_{\left(\frac{n+1}{2}\right)}, & n=\text { 奇数, } \\ \frac{x_{\left(\frac{n}{2}\right)}+x_{\left(\frac{n}{2}+1\right)}}{2}, & n=\text { 偶数. }\end{cases} m0.5=⎩⎨⎧x(2n+1),2x(2n)+x(2n+1),n= 奇数, n= 偶数.
(5) 经验分布函数是根据样本信息来对总体分布函数作出的估计, 记作 F n ( x ) = 1 n ∑ i = 1 n I [ X i ≤ x ] , F_{n}(x)=\frac{1}{n} \sum_{i=1}^{n} I\left[X_{i} \leq x\right], Fn(x)=n1i=1∑nI[Xi≤x], 根据 Glivenko-Cantelli 定理, 经验分布函数是总体分布函数的一致强相合估计, 即 sup x ∣ F n ( x ) − F ( x ) ∣ * a . s . 0. \sup _{x}\left|F_{n}(x)-F(x)\right| \stackrel{a . s .}{\longrightarrow} 0 . xsup∣Fn(x)−F(x)∣*a.s.0. (6) 如果 g ^ ( X 1 , … , X n ) \hat{g}\left(X_{1}, \ldots, X_{n}\right) g^(X1,…,Xn) 满足 E g ^ ( X 1 , … , X n ) = g ( θ ) E \hat{g}\left(X_{1}, \ldots, X_{n}\right)=g(\theta) Eg^(X1,…,Xn)=g(θ), 则称 g ^ \hat{g} g^ 是 g g g 的无偏估计, 无偏性是一 个很重要的优良标准, 但并不是必须的, 如当 E X E X EX存在, 随机样本 X 1 X_{1} X1总是总体期望的无偏估计, 但你很难说它是一个很好的估计.
二、(20分) X 1 , X 2 , X_{1}, X_{2}, X1,X2, i.i.d ∼ Exp ( 1 ) , \sim \operatorname{Exp}(1), ∼Exp(1), 求
(1)(10分) X 1 X 1 + X 2 \frac{X_{1}}{X_{1}+X_{2}} X1+X2X1的密度函数;
(2)(10分) X ( 2 ) − X ( 1 ) X_{(2)}-X_{(1)} X(2)−X(1) 的密度函数.
Solution: (1) 根据题意, 2 X 1 ∼ χ 2 ( 2 ) , 2 X 2 ∼ χ 2 ( 2 ) 2 X_{1} \sim \chi^{2}(2), 2 X_{2} \sim \chi^{2}(2) 2X1∼χ2(2),2X2∼χ2(2) 且相互独立, 故 X 1 X 1 + X 2 = 2 X 1 2 X 1 + 2 X 2 ∼ Beta ( 1 , 1 ) \frac{X_{1}}{X_{1}+X_{2}}=\frac{2 X_{1}}{2 X_{1}+2 X_{2}} \sim \operatorname{Beta}(1,1) X1+X2X1=2X1+2X22X1∼Beta(1,1), 密度函数为 f ( x ) = 1 , 0 < x < 1 f(x)=1,0<x<1 f(x)=1,0<x<1, 即 U ( 0 , 1 ) U(0,1) U(0,1).
(2) 很容易发现 X ( 2 ) − X ( 1 ) = ∣ X 1 − X 2 ∣ X_{(2)}-X_{(1)}=\left|X_{1}-X_{2}\right| X(2)−X(1)=∣X1−X2∣, 根据卷积公式有 Y = X 1 − X 2 Y=X_{1}-X_{2} Y=X1−X2 的密度函数是 f ( y ) = { 1 2 e − y , y ≥ 0 1 2 e y , y < 0 f(y)= \begin{cases}\frac{1}{2} e^{-y}, & y \geq 0 \\ \frac{1}{2} e^{y}, & y<0\end{cases} f(y)={ 21e−y,21ey,y≥0y<0 故 ∣ Y ∣ |Y| ∣Y∣ 的密度函数是 f ( x ) = e − y , y ≥ 0 f(x)=e^{-y}, y \geq 0 f(x)=e−y,y≥0.
[注] 若 X ∼ χ 2 ( m ) , Y ∼ χ 2 ( n ) X \sim \chi^{2}(m), Y \sim \chi^{2}(n) X∼χ2(m),Y∼χ2(n), 且相互独立, 则 X X + Y ∼ Beta ( m 2 , n 2 ) . \frac{X}{X+Y} \sim \operatorname{Beta}\left(\frac{m}{2}, \frac{n}{2}\right). X+YX∼Beta(2m,2n). 分析如下: 记 U = X X + Y , V = X + Y U=\frac{X}{X+Y}, V=X+Y U=X+YX,V=X+Y, 反解后有 x = u v , y = v − u v x=u v, y=v-u v x=uv,y=v−uv, ∣ J ∣ = ∣ ∂ ( x , y ) ∂ ( u , v ) ∣ = ∣ v u − v 1 − u ∣ = v , |J|=\left|\frac{\partial(x, y)}{\partial(u, v)}\right|=\left|\begin{array}{cc} v & u \\ -v & 1-u \end{array}\right|=v, ∣J∣=∣∣∣∣∂(u,v)∂(x,y)∣∣∣∣=∣∣∣∣v−vu1−u∣∣∣∣=v, 因此 f U , V ( u , v ) = v f X , Y ( u v , ( 1 − u ) v ) = u m 2 − 1 ( 1 − u ) n 2 − 1 Γ ( m 2 ) Γ ( n 2 ) ⋅ ( 1 2 ) m + n 2 v m + n 2 − 1 e − v 2 f_{U, V}(u, v)=v f_{X, Y}(u v,(1-u) v)=\frac{u^{\frac{m}{2}-1}(1-u)^{\frac{n}{2}-1}}{\Gamma\left(\frac{m}{2}\right) \Gamma\left(\frac{n}{2}\right)} \cdot\left(\frac{1}{2}\right)^{\frac{m+n}{2}} v^{\frac{m+n}{2}-1} e^{-\frac{v}{2}} fU,V(u,v)=vfX,Y(uv,(1−u)v)=Γ(2m)Γ(2n)u2m−1(1−u)2n−1⋅(21)2m+nv2m+n−1e−2v, 故 f U ( u ) = ∫ 0 + ∞ f U , V ( u , v ) d v = Γ ( m + n 2 ) Γ ( m 2 ) Γ ( n 2 ) u m 2 − 1 ( 1 − u ) n 2 − 1 ∼ Beta ( m 2 , n 2 ) . f_{U}(u)=\int_{0}^{+\infty} f_{U, V}(u, v) d v=\frac{\Gamma\left(\frac{m+n}{2}\right)}{\Gamma\left(\frac{m}{2}\right) \Gamma\left(\frac{n}{2}\right)} u^{\frac{m}{2}-1}(1-u)^{\frac{n}{2}-1} \sim \operatorname{Beta}\left(\frac{m}{2}, \frac{n}{2}\right). fU(u)=∫0+∞fU,V(u,v)dv=Γ(2m)Γ(2n)Γ(2m+n)u2m−1(1−u)2n−1∼Beta(2m,2n).
三、(20分) X 1 , X 2 X_{1}, X_{2} X1,X2 i.i.d ∼ N ( 0 , 1 ) , \sim N(0,1), ∼N(0,1), 求 X 1 X 2 \frac{X_{1}}{X_{2}} X2X1的概率分布.
Solution: 由于分母 X 2 X_{2} X2 的分布关于 0 对称, 因此 X 1 ∣ X 2 ∣ \frac{X_{1}}{\left|X_{2}\right|} ∣X2∣X1 与 X 1 X 2 \frac{X_{1}}{X_{2}} X2X1 同分布, 而很明显 N ( 0 , 1 ) χ 2 ( 1 ) 1 \frac{N(0,1)}{\sqrt{\frac{\chi^{2}(1)}{1}}} 1χ2(1)N(0,1) 是一个自由度为 1 的 t t t 分布, 所以 X 1 ∣ X 2 ∣ \frac{X_{1}}{\left|X_{2}\right|} ∣X2∣X1也是自由度为 1 的 t t t 分布, 它的概率密度是 f ( x ) = Γ ( 1 ) π Γ ( 1 2 ) ( x 2 + 1 ) − 1 = 1 π ⋅ 1 1 + x 2 , − ∞ < x < + ∞ , f(x)=\frac{\Gamma(1)}{\sqrt{\pi} \Gamma\left(\frac{1}{2}\right)}\left(x^{2}+1\right)^{-1}=\frac{1}{\pi} \cdot \frac{1}{1+x^{2}},-\infty<x<+\infty, f(x)=πΓ(21)Γ(1)(x2+1)−1=π1⋅1+x21,−∞<x<+∞, 即标准柯西分布.
四、(20分) X 1 , X 2 , … , X n X_{1}, X_{2}, \ldots, X_{n} X1,X2,…,Xn i.i.d ∼ F ( x ) , \sim F(x), ∼F(x), 记 Y n ( x ) = ∑ i = 1 n I [ X i ≤ x ] , Y_{n}(x)=\sum_{i=1}^{n} I\left[X_{i} \leq x\right], Yn(x)=∑i=1nI[Xi≤x], 求 lim n → ∞ Y n ( x ) n \lim _{n \rightarrow \infty} \frac{Y_{n}(x)}{n} limn→∞nYn(x).
Solution: 根据强大数律, lim n → ∞ Y n ( x ) n = E I [ X 1 ≤ x ] = P ( X 1 ≤ x ) = F ( x ) \lim _{n \rightarrow \infty} \frac{Y_{n}(x)}{n}=E I\left[X_{1} \leq x\right]=P\left(X_{1} \leq x\right)=F(x) limn→∞nYn(x)=EI[X1≤x]=P(X1≤x)=F(x), a.s.
五、(20分) X 0 , X 1 , ⋯ , X 2 n , X_{0}, X_{1}, \cdots, X_{2 n}, X0,X1,⋯,X2n, i.i.d ∼ U ( 0 , 1 ) , X ( 0 ) , X ( 1 ) , ⋯ , X ( 2 n ) \sim U(0,1), \quad X_{(0)}, X_{(1)}, \cdots, X_{(2 n)} ∼U(0,1),X(0),X(1),⋯,X(2n)为对应的次序统计量, 试证明 X ( n ) → P 1 2 X_{(n)} \stackrel{P}{\rightarrow} \frac{1}{2} X(n)→P21.
Solution: 我们来计算 Y = X ( n ) Y=X_{(n)} Y=X(n) 的密度函数, 思想是: 从 X 0 , X 1 , ⋯ , X 2 n X_{0}, X_{1}, \cdots, X_{2 n} X0,X1,⋯,X2n 中选出一个当作 Y Y Y, 剩下 的样本中要有 n n n 个比 Y Y Y 小, n n n 个比 Y Y Y 大, 当然符合的选法有 ( 2 n + 1 ) ! n ! ⋅ 1 ! ⋅ n ! \frac{(2 n+1) !}{n ! \cdot 1 ! \cdot n !} n!⋅1!⋅n!(2n+1)! 种, 因此
f ( y ) = ( 2 n + 1 ) ! n ! n ! P { X 0 ≤ y , X 1 ≤ y , … , X n − 1 ≤ y } f X n ( y ) P { X n + 1 > y , … , X 2 n > y } P { X 0 ≤ y , X 1 ≤ y , … , X n − 1 ≤ y } = P n { X 0 ≤ y } = y n , P { X n + 1 > y , … , X 2 n > y } = P n { X 2 n > y } = ( 1 − y ) n , \begin{gathered} f(y)=\frac{(2 n+1) !}{n ! n !} P\left\{X_{0} \leq y, X_{1} \leq y, \ldots, X_{n-1} \leq y\right\} f_{X_{n}}(y) P\left\{X_{n+1}>y, \ldots, X_{2 n}>y\right\}\\ P\left\{X_{0} \leq y, X_{1} \leq y, \ldots, X_{n-1} \leq y\right\}=P^{n}\left\{X_{0} \leq y\right\}=y^{n}, \\ P\left\{X_{n+1}>y, \ldots, X_{2 n}>y\right\}=P^{n}\left\{X_{2 n}>y\right\}=(1-y)^{n}, \end{gathered} f(y)=n!n!(2n+1)!P{ X0≤y,X1≤y,…,Xn−1≤y}fXn(y)P{ Xn+1>y,…,X2n>y}P{ X0≤y,X1≤y,…,Xn−1≤y}=Pn{ X0≤y}=yn,P{ Xn+1>y,…,X2n>y}=Pn{ X2n>y}=(1−y)n, 故 f ( y ) = Γ ( 2 n + 2 ) Γ ( n + 1 ) Γ ( n + 1 ) y n ( 1 − y ) n , 0 < y < 1 f(y)=\frac{\Gamma(2 n+2)}{\Gamma(n+1) \Gamma(n+1)} y^{n}(1-y)^{n}, 0<y<1 f(y)=Γ(n+1)Γ(n+1)Γ(2n+2)yn(1−y)n,0<y<1, 这是 Beta ( n + 1 , n + 1 ) \operatorname{Beta}(n+1, n+1) Beta(n+1,n+1) 的分布函数. 根据Beta分布的性质, E Y = n + 1 2 n + 2 = 1 2 , Var ( Y ) = ( n + 1 ) 2 ( 2 n + 2 ) 2 ( 2 n + 3 ) → 0 , E Y=\frac{n+1}{2 n+2}=\frac{1}{2},\quad \operatorname{Var}(Y)=\frac{(n+1)^{2}}{(2 n+2)^{2}(2 n+3)} \rightarrow 0, EY=2n+2n+1=21,Var(Y)=(2n+2)2(2n+3)(n+1)2→0,利用切比雪夫不等式, P { ∣ Y − 1 2 ∣ > ε } ≤ Var ( Y ) ε 2 → 0 P\left\{\left|Y-\frac{1}{2}\right|>\varepsilon\right\} \leq \frac{\operatorname{Var}(Y)}{\varepsilon^{2}} \rightarrow 0 P{ ∣∣Y−21∣∣>ε}≤ε2Var(Y)→0, 因此 X ( n ) → P 1 2 X_{(n)} \stackrel{P}{\rightarrow} \frac{1}{2} X(n)→P21.
六、(20分) 已知连续型随机变量 X X X的期望 E X E X EX存在, f ( t ) = E ∣ X − t ∣ f(t)=E|X-t| f(t)=E∣X−t∣在 t = m t=m t=m时取极小值, 证明 P ( X ≤ m ) = 1 2 P(X \leq m)=\frac{1}{2} P(X≤m)=21.
Solution: 设 X X X 的分布函数是 F ( x ) F(x) F(x), 宓度函数是 p ( x ) p(x) p(x), 则 f ( t ) = ∫ − ∞ t ( t − x ) d F ( x ) + ∫ t + ∞ ( x − t ) d F ( x ) = t F ( t ) − ∫ − ∞ t x d F ( x ) + ∫ t + ∞ x d F ( x ) − t ( 1 − F ( t ) ) , f(t)=\int_{-\infty}^{t}(t-x) d F(x)+\int_{t}^{+\infty}(x-t) d F(x)=t F(t)-\int_{-\infty}^{t} x d F(x)+\int_{t}^{+\infty} x d F(x)-t(1-F(t)), f(t)=∫−∞t(t−x)dF(x)+∫t+∞(x−t)dF(x)=tF(t)−∫−∞txdF(x)+∫t+∞xdF(x)−t(1−F(t)), 对 t t t 求导, 得 f ′ ( t ) = F ( t ) + t p ( t ) − t p ( t ) − t p ( t ) − 1 + F ( t ) + t p ( t ) = 2 F ( t ) − 1 , f^{\prime}(t)=F(t)+t p(t)-t p(t)-t p(t)-1+F(t)+t p(t)=2 F(t)-1, f′(t)=F(t)+tp(t)−tp(t)−tp(t)−1+F(t)+tp(t)=2F(t)−1,令 f ′ ( t ) = 0 f^{\prime}(t)=0 f′(t)=0, 解得 t = x 0.5 ( x a t=x_{0.5} \left(x_{a}\right. t=x0.5(xa 表示其满足 F ( x a ) = a ) \left.F\left(x_{a}\right)=a\right) F(xa)=a). 二阶导 f ′ ′ ( t ) = 2 p ( t ) ≥ 0 f^{\prime \prime}(t)=2 p(t) \geq 0 f′′(t)=2p(t)≥0, 因此驻点就是极小值点. 根据题意 m = x 0.5 m=x_{0.5} m=x0.5, 故 P ( X ≤ m ) = 1 2 . P(X \leq m)=\frac{1}{2} . P(X≤m)=21.
七、(20分) X 1 , X 2 , X 3 , X_{1}, X_{2}, X_{3}, X1,X2,X3, i.i.d ∼ N ( 0 , 1 ) , \sim N(0,1), ∼N(0,1), 求
(1)(10分) P ( X 1 > X 2 > X 3 ) P\left(X_{1}>X_{2}>X_{3}\right) P(X1>X2>X3);
(2)(10分) P ( X 1 > X 2 , X 1 > X 3 ) P\left(X_{1}>X_{2}, X_{1}>X_{3}\right) P(X1>X2,X1>X3).
Solution: (1) 根据轮换对称性, P ( X 1 > X 2 > X 3 ) = P ( X 1 > X 3 > X 2 ) = P ( X 2 > X 1 > X 3 ) = P ( X 2 > X 3 > X 1 ) = P ( X 3 > X 1 > X 2 ) = P ( X 3 > X 2 > X 1 ) \begin{aligned} & P\left(X_{1}>X_{2}>X_{3}\right)=P\left(X_{1}>X_{3}>X_{2}\right)=P\left(X_{2}>X_{1}>X_{3}\right) \\ =& P\left(X_{2}>X_{3}>X_{1}\right)=P\left(X_{3}>X_{1}>X_{2}\right)=P\left(X_{3}>X_{2}>X_{1}\right) \end{aligned} =P(X1>X2>X3)=P(X1>X3>X2)=P(X2>X1>X3)P(X2>X3>X1)=P(X3>X1>X2)=P(X3>X2>X1) 这些事件互不相交, 并且这些事件的并是概率为 1 的事件, 故 6 P ( X 1 > X 2 > X 3 ) = 1 ⇒ P ( X 1 > X 2 > X 3 ) = 1 6 . 6 P\left(X_{1}>X_{2}>X_{3}\right)=1 \Rightarrow P\left(X_{1}>X_{2}>X_{3}\right)=\frac{1}{6} . 6P(X1>X2>X3)=1⇒P(X1>X2>X3)=61. (2) 我们发现:
P ( X 1 > X 2 , X 1 > X 3 ) = P ( X 1 = max { X 1 , X 2 , X 3 } ) , P\left(X_{1}>X_{2}, X_{1}>X_{3}\right)=P\left(X_{1}=\max \left\{X_{1}, X_{2}, X_{3}\right\}\right), P(X1>X2,X1>X3)=P(X1=max{ X1,X2,X3}),根据轮换对称性, P ( X 1 = max { X 1 , X 2 , X 3 } ) = P ( X 2 = max { X 1 , X 2 , X 3 } ) = P ( X 3 = max { X 1 , X 2 , X 3 } ) , P\left(X_{1}=\max \left\{X_{1}, X_{2}, X_{3}\right\}\right)=P\left(X_{2}=\max \left\{X_{1}, X_{2}, X_{3}\right\}\right)=P\left(X_{3}=\max \left\{X_{1}, X_{2}, X_{3}\right\}\right), P(X1=max{ X1,X2,X3})=P(X2=max{ X1,X2,X3})=P(X3=max{ X1,X2,X3}),故 P ( X 1 > X 2 , X 1 > X 3 ) = 1 3 P\left(X_{1}>X_{2}, X_{1}>X_{3}\right)=\frac{1}{3} P(X1>X2,X1>X3)=31.
边栏推荐
- Branch and loop statements
- View UI plus released version 1.2.0 and added image, skeleton and typography components
- Tyut outline of 2022 database examination of Taiyuan University of Technology
- First acquaintance with C language (Part 1)
- 4.二分查找
- 4. Binary search
- Summary of multiple choice questions in the 2022 database of tyut Taiyuan University of Technology
- vector
- 5.MSDN的下载和使用
- 十分钟彻底掌握缓存击穿、缓存穿透、缓存雪崩
猜你喜欢
随机推荐
[Topic terminator]
Comparison between FileInputStream and bufferedinputstream
初识C语言(下)
(super detailed II) detailed visualization of onenet data, how to plot with intercepted data flow
Solution: warning:tensorflow:gradients do not exist for variables ['deny_1/kernel:0', 'deny_1/bias:0',
TYUT太原理工大学2022软工导论简答题
TYUT太原理工大学2022数据库大题之数据库操作
TYUT太原理工大学2022数据库大题之E-R图转关系模式
西安电子科技大学22学年上学期《基础实验》试题及答案
MPLS experiment
阿里云微服务(一)服务注册中心Nacos以及REST Template和Feign Client
Arduino+ water level sensor +led display + buzzer alarm
TYUT太原理工大学2022数据库之关系代数小题
2.C语言初阶练习题(2)
View UI Plus 發布 1.3.1 版本,增强 TypeScript 使用體驗
List set map queue deque stack
系统设计学习(一)Design Pastebin.com (or Bit.ly)
View UI plus released version 1.3.0, adding space and $imagepreview components
5.MSDN的下载和使用
165. Compare version number - string









