当前位置:网站首页>MNIST handwritten digit recognition - based on Mindspore to quickly build a perceptron to achieve ten categories
MNIST handwritten digit recognition - based on Mindspore to quickly build a perceptron to achieve ten categories
2022-08-04 06:20:00 【Learning Adventures】
Based on the deep learning framework, the perceptron is quickly constructed to realize the binary classification of handwritten digits
Does not rely on mathematical knowledge,使用MindSporeDeep learning frameworks quickly implement model structure definition、损失函数定义、梯度下降的方法.
The previous section implemented the model structure of the perceptron from scratch、The loss function and evaluation function are defined,And the formula for gradient descent was manually derived,最终经过3000个epoch的训练,Makes the perceptron model in handwritten digits0和1achieved on the binary classification task0.9以上的准确率.
This way of implementing the entire machine learning process from scratch is laborious,Especially in the manual derivation of the gradient descent formula,需要一定的数学知识.If you replace another loss function,Then you have to re-derive the new gradient descent formula again,This is a laborious thing to tune the model.
Fortunately, there are already many deep learning frameworks today,They have nicely encapsulated model structure definitions、损失函数定义、梯度下降实现等过程,Just make some simple function calls,The completed machine learning training process can be implemented,No need to pay attention to how the underlying gradient descent is implemented,极大地提高了模型开发的效率.
下面,用MindSporeFramework to quickly implement perceptron models,Binary classification of handwritten digits.
1.加载数据集
As already defined in the previous sectionload_data_zeros_ones函数,So you can call it directly
import os
import sys
import moxing as mox
datasets_dir = '../datasets'
if not os.path.exists(datasets_dir):
os.makedirs(datasets_dir)
if not os.path.exists(os.path.join(datasets_dir, 'MNIST_Data.zip')):
mox.file.copy('obs://modelarts-labs-bj4-v2/course/hwc_edu/python_module_framework/datasets/mindspore_data/MNIST_Data.zip',
os.path.join(datasets_dir, 'MNIST_Data.zip'))
os.system('cd %s; unzip MNIST_Data.zip' % (datasets_dir))
sys.path.insert(0, os.path.join(os.getcwd(), '../datasets/MNIST_Data'))
from load_data_zeros_ones import load_data_zeros_ones
train_images, train_labels, test_images, test_labels = load_data_zeros_ones(datasets_dir)
数字0,训练集规模: 5923 ,测试集规模: 980
数字1,训练集规模: 6742 ,测试集规模: 1135
load_data_zeros_onesThe format of the data returned by the function isnp.ndarray格式,但是在MindSporeThe format required in is Tensor格式,Therefore, execute the following code for data format conversion
import mindspore
from mindspore import Tensor
# Reshape the dataset
train_images = train_images.reshape((-1,1,28,28))
train_labels = train_labels.flatten()
test_images = test_images.reshape((-1,1,28,28))
test_labels = test_labels.flatten()
train_size = len(train_labels)
test_size = len(test_labels)
# 转变为mindspore支持的tensor格式的数据
train_images = Tensor(train_images, mindspore.float32)
train_labels = Tensor(train_labels, mindspore.int32)
test_images = Tensor(test_images, mindspore.float32)
test_labels = Tensor(test_labels, mindspore.int32)
2.定义网络结构和评价函数
使用 MindSpore Implementing a perceptron model is very simple,只需要调用nn.Dense定义一个全连接层,再加上一个Sigmoid单元即可,并且nn.Densewill weighwand threshold biasb自动进行初始化,代码如下:
import mindspore.nn as nn
import mindspore.ops as ops
from mindspore.common.initializer import Normal
class Network(nn.Cell):
def __init__(self, num_of_weights):
super(Network, self).__init__()
self.fc = nn.Dense(in_channels=num_of_weights, out_channels=2) # 定义一个全连接层
self.nonlinearity = nn.Sigmoid()
self.flatten = nn.Flatten()
def construct(self, x): # 加权求和单元和非线性函数单元通过定义计算过程来实现
x = self.flatten(x)
z = self.fc(x)
pred_y = self.nonlinearity(z)
return pred_y
# 评价函数
def evaluate(pred_y, true_y):
pred_labels = ops.Argmax(output_type=mindspore.int32)(pred_y)
correct_num = (pred_labels == true_y).asnumpy().sum().item()
return correct_num
3.定义交叉熵损失函数和优化器
要训练神经网络模型,需要定义损失函数和优化器.
MindSpore支持的损失函数有SoftmaxCrossEntropyWithLogits、L1Loss、MSELoss等.这里使用交叉熵损失函数SoftmaxCrossEntropyWithLogits.
MindSpore支持的优化器有Adam、AdamWeightDecay、SGD、Momentum等.这里使用Momentum优化器为例.
# 损失函数
net_loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean')
# 创建网络
network = Network(28*28)
lr = 0.01
momentum = 0.9
# 优化器
net_opt = nn.Momentum(network.trainable_params(), lr, momentum)
4.实现训练函数
def train(network, max_epochs= 50):
net = WithLossCell(network, net_loss)
train_network = TrainOneStepCell(net, net_opt)
train_network.set_train()
for epoch in range(1, max_epochs + 1):
train_correct_num = 0.0
test_correct_num = 0.0
output = train_network(train_images,train_labels)
pred_train_labels = network.construct(train_images) # 前向传播
train_correct_num = evaluate(pred_train_labels, train_labels)
train_acc = float(train_correct_num) / train_size
if (epoch == 1) or (epoch % 10 == 0):
pred_test_labels = network.construct(test_images)
test_correct_num = evaluate(pred_test_labels, test_labels)
test_acc = test_correct_num / test_size
print("epoch: {0}/{1}, train_losses: {2:.4f}, tain_acc: {3:.4f}, test_acc: {4:.4f}" \
.format(epoch, max_epochs, output.asnumpy(), train_acc, test_acc, cflush=True))
5.配置运行信息
在正式训练前,通过context.set_context来配置运行需要的信息,譬如运行模式、后端信息、硬件等信息.
from mindspore import context
context.set_context(mode=context.GRAPH_MODE, device_target="CPU") # device_target 可选 CPU/GPU, 当选择GPU时mindspore规格也需要切换到GPU
6.开始训练
import time
from mindspore.nn import WithLossCell, TrainOneStepCell
max_epochs = 50
start_time = time.time()
print("*"*10 + "开始训练" + "*"*10)
train(network, max_epochs= max_epochs)
print("*"*10 + "训练完成" + "*"*10)
cost_time = round(time.time() - start_time, 1)
print("训练总耗时: %.1f s" % cost_time)
**********开始训练********** epoch: 1/50, train_losses: 0.7050, tain_acc: 0.3516, test_acc: 0.3759 epoch: 10/50, train_losses: 0.5338, tain_acc: 0.9901, test_acc: 0.9943 epoch: 20/50, train_losses: 0.3990, tain_acc: 0.9949, test_acc: 0.9981 epoch: 30/50, train_losses: 0.3593, tain_acc: 0.9935, test_acc: 0.9972 epoch: 40/50, train_losses: 0.3468, tain_acc: 0.9934, test_acc: 0.9967 epoch: 50/50, train_losses: 0.3410, tain_acc: 0.9938, test_acc: 0.9967 **********训练完成********** 训练总耗时: 9.1 s
从上面的结果可以看到,使用 MindSpore 实现的感知机模型,使用20秒的时间,训练了50个epochAfter that it was reached0.9967的准确率,Compared to the implementation in the previous section,Training is fast and good,这说明使用 MindSpore to develop the model,不仅开发效率更高,The results achieved are also better,This is using deep learning frameworksMindSpore带来的优势.
Extending from binary to decile
使用深度学习框架MindSpore,利用其友好的封装模块,模型结构定义、损失函数定义、梯度下降实现等过程,只需简单地函数调用,就能实现模型训练,极大地提高了模型开发的效率.
1.加载数据集
加载完整的、十个类别的数据集
import os
import numpy as np
import moxing as mox
import mindspore.dataset as ds
datasets_dir = '../datasets'
if not os.path.exists(datasets_dir):
os.makedirs(datasets_dir)
if not os.path.exists(os.path.join(datasets_dir, 'MNIST_Data.zip')):
mox.file.copy('obs://modelarts-labs-bj4-v2/course/hwc_edu/python_module_framework/datasets/mindspore_data/MNIST_Data.zip',
os.path.join(datasets_dir, 'MNIST_Data.zip'))
os.system('cd %s; unzip MNIST_Data.zip' % (datasets_dir))
# 读取完整训练样本和测试样本
mnist_ds_train = ds.MnistDataset(os.path.join(datasets_dir, "MNIST_Data/train"))
mnist_ds_test = ds.MnistDataset(os.path.join(datasets_dir, "MNIST_Data/test"))
train_len = mnist_ds_train.get_dataset_size()
test_len = mnist_ds_test.get_dataset_size()
print('训练集规模:', train_len, ',测试集规模:', test_len)
训练集规模: 60000 ,测试集规模: 10000
查看10个样本
from PIL import Image
items_train = mnist_ds_train.create_dict_iterator(output_numpy=True)
train_data = np.array([i for i in items_train])
images_train = np.array([i["image"] for i in train_data])
labels_train = np.array([i["label"] for i in train_data])
batch_size = 10 # 查看10个样本
batch_label = [lab for lab in labels_train[:10]]
print(batch_label)
batch_img = images_train[0].reshape(28, 28)
for i in range(1, batch_size):
batch_img = np.hstack((batch_img, images_train[i].reshape(28, 28))) # 将一批图片水平拼接起来,方便下一步进行显示
Image.fromarray(batch_img)
[0, 2, 2, 7, 8, 4, 9, 1, 8, 8]
2.处理数据集
数据集对于训练非常重要,好的数据集可以有效提高训练精度和效率,在使用数据集前,通常会对数据集进行一些处理.
进行数据增强操作
import mindspore.dataset.vision.c_transforms as CV
import mindspore.dataset.transforms.c_transforms as C
from mindspore.dataset.vision import Inter
from mindspore import dtype as mstype
num_parallel_workers = 1
resize_height, resize_width = 28, 28
# according to the parameters, generate the corresponding data enhancement method
resize_op = CV.Resize((resize_height, resize_width), interpolation=Inter.LINEAR) # 对图像数据像素进行缩放
type_cast_op = C.TypeCast(mstype.int32) # 将数据类型转化为int32.
hwc2chw_op = CV.HWC2CHW() # 对图像数据张量进行变换,张量形式由高x宽x通道(HWC)变为通道x高x宽(CHW),方便进行数据训练.
# using map to apply operations to a dataset
mnist_ds_train = mnist_ds_train.map(operations=resize_op, input_columns="image", num_parallel_workers=num_parallel_workers)
mnist_ds_train = mnist_ds_train.map(operations=type_cast_op, input_columns="label", num_parallel_workers=num_parallel_workers)
mnist_ds_train = mnist_ds_train.map(operations=hwc2chw_op, input_columns="image", num_parallel_workers=num_parallel_workers)
buffer_size = 10000
mnist_ds_train = mnist_ds_train.shuffle(buffer_size=buffer_size) # 打乱训练集的顺序
进行数据归一化
对图像数据进行标准化、归一化操作,使得每个像素的数值大小在(0,1)范围中,可以提升训练效率.
rescale = 1.0 / 255.0
shift = 0.0
rescale_nml = 1 / 0.3081
shift_nml = -1 * 0.1307 / 0.3081
rescale_op = CV.Rescale(rescale, shift)
mnist_ds_train = mnist_ds_train.map(operations=rescale_op, input_columns="image", num_parallel_workers=num_parallel_workers)
rescale_nml_op = CV.Rescale(rescale_nml, shift_nml)
mnist_ds_train = mnist_ds_train.map(operations=rescale_nml_op, input_columns="image", num_parallel_workers=num_parallel_workers)
mnist_ds_train = mnist_ds_train.batch(60000, drop_remainder=True) # 对数据集进行分批,此处加载完整的训练集
3.封装成函数
到此,完成了训练数据的准备工作,可以将以上操作封装成load_data_all函数和process_dataset函数,以便后面再次用到.
定义数据处理操作
定义一个函数process_dataset来进行数据增强和处理操作:
定义进行数据增强和处理所需要的一些参数.
根据参数,生成对应的数据增强操作.
使用map映射函数,将数据操作应用到数据集.
对生成的数据集进行处理.
%%writefile ../datasets/MNIST_Data/process_dataset.py
def process_dataset(mnist_ds, batch_size=32, resize= 28, repeat_size=1,
num_parallel_workers=1):
"""
process_dataset for train or test
Args:
mnist_ds (str): MnistData path
batch_size (int): The number of data records in each group
resize (int): Scale image data pixels
repeat_size (int): The number of replicated data records
num_parallel_workers (int): The number of parallel workers
"""
import mindspore.dataset.vision.c_transforms as CV
import mindspore.dataset.transforms.c_transforms as C
from mindspore.dataset.vision import Inter
from mindspore import dtype as mstype
# define some parameters needed for data enhancement and rough justification
resize_height, resize_width = resize, resize
rescale = 1.0 / 255.0
shift = 0.0
rescale_nml = 1 / 0.3081
shift_nml = -1 * 0.1307 / 0.3081
# according to the parameters, generate the corresponding data enhancement method
resize_op = CV.Resize((resize_height, resize_width), interpolation=Inter.LINEAR)
rescale_nml_op = CV.Rescale(rescale_nml, shift_nml)
rescale_op = CV.Rescale(rescale, shift)
hwc2chw_op = CV.HWC2CHW()
type_cast_op = C.TypeCast(mstype.int32)
c_trans = [resize_op, rescale_op, rescale_nml_op, hwc2chw_op]
# using map to apply operations to a dataset
mnist_ds = mnist_ds.map(operations=type_cast_op, input_columns="label", num_parallel_workers=num_parallel_workers)
mnist_ds = mnist_ds.map(operations=c_trans, input_columns="image", num_parallel_workers=num_parallel_workers)
# process the generated dataset
buffer_size = 10000
mnist_ds = mnist_ds.shuffle(buffer_size=buffer_size)
mnist_ds = mnist_ds.batch(batch_size, drop_remainder=True)
mnist_ds = mnist_ds.repeat(repeat_size)
return mnist_ds
定义数据加载函数
%%writefile ../datasets/MNIST_Data/load_data_all.py
def load_data_all(datasets_dir):
import os
if not os.path.exists(datasets_dir):
os.makedirs(datasets_dir)
import moxing as mox
if not os.path.exists(os.path.join(datasets_dir, 'MNIST_Data.zip')):
mox.file.copy('obs://modelarts-labs-bj4-v2/course/hwc_edu/python_module_framework/datasets/mindspore_data/MNIST_Data.zip',
os.path.join(datasets_dir, 'MNIST_Data.zip'))
os.system('cd %s; unzip MNIST_Data.zip' % (datasets_dir))
# 读取完整训练样本和测试样本
import mindspore.dataset as ds
datasets_dir = '../datasets'
mnist_ds_train = ds.MnistDataset(os.path.join(datasets_dir, "MNIST_Data/train"))
mnist_ds_test = ds.MnistDataset(os.path.join(datasets_dir, "MNIST_Data/test"))
train_len = mnist_ds_train.get_dataset_size()
test_len = mnist_ds_test.get_dataset_size()
print('训练集规模:', train_len, ',测试集规模:', test_len)
return mnist_ds_train, mnist_ds_test, train_len, test_len
4.加载处理后的测试集
import os, sys
sys.path.insert(0, os.path.join(os.getcwd(), '../datasets/MNIST_Data'))
from process_dataset import process_dataset
mnist_ds_test = process_dataset(mnist_ds_test, batch_size= 10000)
5.定义网络结构和评价函数
import mindspore
import mindspore.nn as nn
import mindspore.ops as ops
from mindspore.common.initializer import Normal
class Network(nn.Cell):
def __init__(self, num_of_weights):
super(Network, self).__init__()
self.fc = nn.Dense(in_channels=num_of_weights, out_channels=10, weight_init=Normal(0.02)) # 定义一个全连接层
self.nonlinearity = nn.Sigmoid()
self.flatten = nn.Flatten()
def construct(self, x): # 加权求和单元和非线性函数单元通过定义计算过程来实现
x = self.flatten(x)
z = self.fc(x)
pred_y = self.nonlinearity(z)
return pred_y
def evaluate(pred_y, true_y):
pred_labels = ops.Argmax(output_type=mindspore.int32)(pred_y)
correct_num = (pred_labels == true_y).asnumpy().sum().item()
return correct_num
6.定义交叉熵损失函数和优化器
# 损失函数
net_loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean')
# 创建网络
network = Network(28*28)
lr = 0.01
momentum = 0.9
# 优化器
net_opt = nn.Momentum(network.trainable_params(), lr, momentum)
7.实现训练函数
def train(network, mnist_ds_train, max_epochs= 50):
net = WithLossCell(network, net_loss)
net = TrainOneStepCell(net, net_opt)
network.set_train()
for epoch in range(1, max_epochs + 1):
train_correct_num = 0.0
test_correct_num = 0.0
for inputs_train in mnist_ds_train:
output = net(*inputs_train)
train_x = inputs_train[0]
train_y = inputs_train[1]
pred_y_train = network.construct(train_x) # 前向传播
train_correct_num += evaluate(pred_y_train, train_y)
train_acc = float(train_correct_num) / train_len
for inputs_test in mnist_ds_test:
test_x = inputs_test[0]
test_y = inputs_test[1]
pred_y_test = network.construct(test_x)
test_correct_num += evaluate(pred_y_test, test_y)
test_acc = float(test_correct_num) / test_len
if (epoch == 1) or (epoch % 10 == 0):
print("epoch: {0}/{1}, train_losses: {2:.4f}, tain_acc: {3:.4f}, test_acc: {4:.4f}" \
.format(epoch, max_epochs, output.asnumpy(), train_acc, test_acc, cflush=True))
8.配置运行信息
在正式训练前,通过context.set_context来配置运行需要的信息,譬如运行模式、后端信息、硬件等信息.
from mindspore import context
context.set_context(mode=context.GRAPH_MODE, device_target="CPU") # device_target 可选 CPU/GPU, 当选择GPU时mindspore规格也需要切换到GPU
9.开始训练
import time
from mindspore.nn import WithLossCell, TrainOneStepCell
max_epochs = 100
start_time = time.time()
print("*"*10 + "开始训练" + "*"*10)
train(network, mnist_ds_train, max_epochs= max_epochs)
print("*"*10 + "训练完成" + "*"*10)
cost_time = round(time.time() - start_time, 1)
print("训练总耗时: %.1f s" % cost_time)
**********开始训练********** epoch: 1/100, train_losses: 2.2832, tain_acc: 0.1698, test_acc: 0.1626 epoch: 10/100, train_losses: 2.0465, tain_acc: 0.6343, test_acc: 0.6017 epoch: 20/100, train_losses: 1.8368, tain_acc: 0.7918, test_acc: 0.7812 epoch: 30/100, train_losses: 1.7602, tain_acc: 0.8138, test_acc: 0.8017 epoch: 40/100, train_losses: 1.7245, tain_acc: 0.8238, test_acc: 0.7972 epoch: 50/100, train_losses: 1.7051, tain_acc: 0.8337, test_acc: 0.8044 epoch: 60/100, train_losses: 1.6922, tain_acc: 0.8403, test_acc: 0.8047 epoch: 70/100, train_losses: 1.6827, tain_acc: 0.8454, test_acc: 0.8033 epoch: 80/100, train_losses: 1.6752, tain_acc: 0.8501, test_acc: 0.8051 epoch: 90/100, train_losses: 1.6689, tain_acc: 0.8536, test_acc: 0.8049 epoch: 100/100, train_losses: 1.6635, tain_acc: 0.8569, test_acc: 0.8037 **********训练完成********** 训练总耗时: 430.7 s
到目前为止,Minor modifications to the code based on binary classification of handwritten digits,就快速实现了手写数字识别的十分类;
修改的过程是非常简单的,但从上面的结果可以看到,该模型训练100个epoch,在手写数字识别十分类的任务上仅仅达到了80%的准确率,而在上一节二分类任务上,模型训练50个epoch达到了99%的准确率,说明在感知机这样简单的模型上,手写数字识别十分类要比二分类要难.
边栏推荐
- arm-2-基础阶段
- MNIST handwritten digit recognition, sorted by from two to ten
- (Navigation page) OpenStack-M version - manual construction of two nodes - with video from station B
- Pytorch语义分割理解
- DeblurGAN-v2: Deblurring (Orders-of-Magnitude) Faster and Better 图像去模糊
- 【代码学习】
- 图像合并水平拼接
- 【五一专属】阿里云ECS大测评#五一专属|向所有热爱分享的“技术劳动者”致敬#
- 【论文阅读】Anchor-Free Person Search
- latex-写论文时一些常用设置
猜你喜欢
深度确定性策略梯度(DDPG)
Amazon Cloud Technology Build On-Amazon Neptune's Knowledge Graph-Based Recommendation Model Building Experience
TensorRT 5 初步认识
Deep Adversarial Decomposition: A Unified Framework for Separating Superimposed Images
Deep Learning Theory - Overfitting, Underfitting, Regularization, Optimizers
Data reading in yolov3 (1)
【Copy攻城狮日志】“一分钟”跑通MindSpore的LeNet模型
PyTorch
中国联通、欧莱雅和钉钉都在争相打造的秘密武器?虚拟IP未来还有怎样的可能
【五一专属】阿里云ECS大测评#五一专属|向所有热爱分享的“技术劳动者”致敬#
随机推荐
2020-10-29
SQL注入详解
Amazon Cloud Technology Build On-Amazon Neptune's Knowledge Graph-Based Recommendation Model Building Experience
Unity ML-agents 参数设置解明
语音驱动嘴型与面部动画生成的现状和趋势
Comparison of oracle's number and postgresql's numeric
Thunderbolt turns off automatic updates
[Copy Siege Lion Log] Flying Pulp Academy Intensive Learning 7-Day Punch Camp-Study Notes
光条中心提取方法总结(一)
中国联通、欧莱雅和钉钉都在争相打造的秘密武器?虚拟IP未来还有怎样的可能
yoloV5 使用——训练速度慢,加速训练
审稿意见回复
光条中心提取方法总结(二)
光条提取中的连通域筛除
深度确定性策略梯度(DDPG)
0, deep learning 21 days learning challenge 】 【 set up learning environment
TypeError: load() missing 1 required positional argument: ‘Loader‘
基于BiGRU和GAN的数据生成方法
深度学习,“粮草”先行--浅谈数据集获取之道
动手学深度学习_多层感知机