当前位置:网站首页>OFDM Lecture 16 5 -Discrete Convolution, ISI and ICI on DMT/OFDM Systems
OFDM Lecture 16 5 -Discrete Convolution, ISI and ICI on DMT/OFDM Systems
2022-08-05 05:12:00 【Ming Dynasty Bai Xiaosheng】
参考:

The point of this article is very fresh and intuitive,Mainly from the linear algebra to explain the relevant principles
目录:
1: 离散卷积
2: ISI & ICI
一 离散卷积
The convolution formula for continuous data was discussed earlier

In fact, there is no continuous data, we generally use discrete convolution,
假设x的长度为n, h的长度为m, y的长度为n+m
1.1 例子
假设
![x=[x_0,x_1,x_2,x_3]](http://img.inotgo.com/imagesLocal/202208/05/202208050509096410_19.gif)
![h=[h_0,h_1,h_2,h_3]](http://img.inotgo.com/imagesLocal/202208/05/202208050509096410_15.gif)
![y_0=\sum_{n=0}^{3}x[n]\bullet h[0-n]](http://img.inotgo.com/imagesLocal/202208/05/202208050509096410_0.gif)

![y_1=\sum_{n=0}^{3}x[n]\bullet h[1-n]](http://img.inotgo.com/imagesLocal/202208/05/202208050509096410_6.gif)

![y_2=\sum_{n=0}^{3}x[n]\bullet h[2-n]](http://img.inotgo.com/imagesLocal/202208/05/202208050509096410_23.gif)

![y_3=\sum_{n=0}^{3}x[n]\bullet h[3-n]](http://img.inotgo.com/imagesLocal/202208/05/202208050509096410_28.gif)

It's essentially the multiplication of two matrices

Further representation method,如下图,Multiply and sum the corresponding column elements

二 CP(Cyclic prefix) CS(Cyclic suffix)
2.1 循环前缀,Cyclic suffix structure

发送端
经过IDFT After inverse discrete Fourier transform,得到长度为Ntime domain data
Then insert a length of a 的cp, 以及长度为b 的 cs

假设原始数据为
![X=[x_0,x_1,x_2,x_3]](http://img.inotgo.com/imagesLocal/202208/05/202208050509096410_18.gif)
a= b=2
![cp=[x_2,x_3], cs=[x_0,x_1]](http://img.inotgo.com/imagesLocal/202208/05/202208050509096410_8.gif)
Finally the data becomes

2.2 ICI

when decoding,We will Fourier transform it,对CP,CS 部分丢弃

如下

One more noise was found 

,interference between other channels
下面是草图


2.3 ISI 模型
跟上面差不多

,

边栏推荐
- Using QR codes to solve fixed asset management challenges
- Cryptography Series: PEM and PKCS7, PKCS8, PKCS12
- uva1325
- Basic properties of binary tree + oj problem analysis
- 淘宝账号如何快速提升到更高等级
- The difference between span tag and p
- Analysis of Mvi Architecture
- How to quickly upgrade your Taobao account to a higher level
- upload upload pictures to Tencent cloud, how to upload pictures
- Homework 8.4 Interprocess Communication Pipes and Signals
猜你喜欢
随机推荐
[Decoding tools] Some online tools for Bitcoin
Flutter learning three-Flutter basic structure and principle
Shell(4)条件控制语句
Flutter学习2-dart学习
Qt制作18帧丘比特表白意中人、是你的丘比特嘛!!!
开发一套高容错分布式系统
Flutter learning 2-dart learning
Requests the library deployment and common function
Excel Paint
What field type of MySQL database table has the largest storage length?
ESP32 485光照度
LAB Semaphore Implementation Details
dedecms error The each() function is deprecated
逆向理论知识4
仪表板展示 | DataEase看中国:数据呈现中国资本市场
Redis - 13、开发规范
入口点注入
8.04 Day35-----MVC three-tier architecture
UVA10827
[Student Graduation Project] Design and Implementation of the Website Based on the Web Student Information Management System (13 pages)









