当前位置:网站首页>[pytorch 07] hands on deep learning chapter_ Preliminaries/ndarray exercises hands-on version
[pytorch 07] hands on deep learning chapter_ Preliminaries/ndarray exercises hands-on version
2022-07-07 10:44:00 【ECCUSXR】
Catalog
3. Through tensor shape Property to access the tensor x( Length along each axis ) The shape of the
4. Just want to know the total number of elements in the tensor , You can check its size (size)
5. Put tensor x From shape to (12,) The row vector of is transformed into a shape of (3,4) Matrix .
6. Create a shape as (2,3,4) Tensor , All elements are set to 0.
7. Create a shape as (2,3,4) Tensor , All elements are set to 1.
9. torch.tensor Create a (3,4) Two dimensional array of .
10. Realize the addition, subtraction, multiplication and division of the following two arrays
11. Exponentiate the following array
12. The following two arrays , Press the line / Splicing by columns
13. Judge whether each element of the following two homogeneous arrays is equal
14. Calculation X The sum of all elements in the array
15. Use arange Create a 3*1 Array of a and 1*2 Array of b
16. Try adding the above two arrays directly , View the situation .
19、 Modify two-dimensional array X The first 0 Xing He 1 All elements of the row are 12.
20、 take X Turn into numpy Assign to A, then A Turn into tensor In the form of B
21、 Output a Original number of 、 Character 、 floating-point
1. Import torch
2. Use arange
Create a row vector x
, This row vector contains the following elements 0 Before we start 12 It's an integer .
3. Through tensor shape
Property to access the tensor x
( Length along each axis ) Of shape
4. Just want to know the total number of elements in the tensor , You can check its size (size)
5. Put tensor x
From shape to (12,) The row vector of is transformed into a shape of (3,4) Matrix .
6. Create a shape as (2,3,4) Tensor , All elements are set to 0.
7. Create a shape as (2,3,4)
Tensor , All elements are set to 1.
8. Create a shape as (3,4) Tensor . Each of these elements has a mean value of 0、 The standard deviation is 1 The standard Gaussian distribution of ( Normal distribution ) Medium random sampling .
9. torch.tensor Create a (3,4) Two dimensional array of .
【 Operator 】
10. Realize the addition, subtraction, multiplication and division of the following two arrays
x = torch.tensor([1.0, 2, 4, 8])
y = torch.tensor([2, 2, 2, 2])
11. Exponentiate the following array
x = torch.tensor([1.0, 2, 4, 8])
12. The following two arrays , Press the line / Splicing by columns
X = torch.arange(12, dtype=torch.float32).reshape((3,4))
Y = torch.tensor([[2.0, 1, 4, 3], [1, 2, 3, 4], [4, 3, 2, 1]])
13. Judge whether each element of the following two homogeneous arrays is equal
X = torch.arange(12, dtype=torch.float32).reshape((3,4))
Y = torch.tensor([[2.0, 1, 4, 3], [1, 2, 3, 4], [4, 3, 2, 1]])
14. Calculation X The sum of all elements in the array
X = torch.arange(12, dtype=torch.float32).reshape((3,4))
【 Broadcast mechanism 】
15. Use arange
Create a 3*1 Array of a and 1*2 Array of b
16. Try adding the above two arrays directly , View the situation .
【 Index and slice 】
17. Take out the two-dimensional array X in choice The last line of elements 、 The second to third lines of elements
X = torch.arange(12, dtype=torch.float32).reshape((3,4))
18、 Modify two-dimensional array X The first 1 Xing di 2 The value of the column is 9 and Write matrix
X = torch.arange(12, dtype=torch.float32).reshape((3,4))
19、 Modify two-dimensional array X The first 0 Xing He 1 All elements of the row are 12.
X = torch.arange(12, dtype=torch.float32).reshape((3,4))
【 Convert objects 】
20、 take X Turn into numpy Assign to A, then A Turn into tensor In the form of B
X = torch.arange(12, dtype=torch.float32).reshape((3,4))
21、 Output a Original number of 、 Character 、 floating-point
a = torch.tensor([3.5])
边栏推荐
- String formatting
- [STM32] solution to the problem that SWD cannot recognize devices after STM32 burning program
- 软考信息处理技术员有哪些备考资料与方法?
- 简单易修改的弹框组件
- The mobile terminal automatically adjusts the page content and font size by setting rem
- The width of table is 4PX larger than that of tbody
- Cluster task scheduling system lsf/sge/slurm/pbs based on HPC scenario
- CSAPP Bomb Lab 解析
- TypeScript 接口继承
- [système recommandé 01] rechub
猜你喜欢
打算参加安全方面工作,信息安全工程师怎么样,软考考试需要怎么准备?
Basic introduction of yarn and job submission process
【实战】霸榜各大医学分割挑战赛的Transformer架构--nnFormer
What are the test preparation materials and methods for soft exam information processing technicians?
简单易修改的弹框组件
深入分析ERC-4907协议的主要内容,思考此协议对NFT市场流动性意义!
[actual combat] transformer architecture of the major medical segmentation challenges on the list --nnformer
Multithreaded asynchronous orchestration
Différences entre les contraintes monotones et anti - monotones
南航 PA3.1
随机推荐
Prototype and prototype chain
Multisim -- software related skills
对word2vec的一些浅层理解
CAS机制
软考信息处理技术员有哪些备考资料与方法?
Find the root of equation ax^2+bx+c=0 (C language)
打算参加安全方面工作,信息安全工程师怎么样,软考考试需要怎么准备?
多线程-异步编排
Deeply analyze the main contents of erc-4907 agreement and think about the significance of this agreement to NFT market liquidity!
[email protected] can help us get the log object quickly
中级网络工程师是什么?主要是考什么,有什么用?
[actual combat] transformer architecture of the major medical segmentation challenges on the list --nnformer
php \n 换行无法输出
简单易修改的弹框组件
施努卡:机器人视觉抓取工作原理 机器视觉抓取
【实战】霸榜各大医学分割挑战赛的Transformer架构--nnFormer
软考中级,软件设计师考试那些内容,考试大纲什么的?
Network engineer test questions and answers in May of the first half of 2022
The width of table is 4PX larger than that of tbody
Socket通信原理和实践