当前位置:网站首页>[pytorch 07] hands on deep learning chapter_ Preliminaries/ndarray exercises hands-on version
[pytorch 07] hands on deep learning chapter_ Preliminaries/ndarray exercises hands-on version
2022-07-07 10:44:00 【ECCUSXR】
Catalog
3. Through tensor shape Property to access the tensor x( Length along each axis ) The shape of the
4. Just want to know the total number of elements in the tensor , You can check its size (size)
5. Put tensor x From shape to (12,) The row vector of is transformed into a shape of (3,4) Matrix .
6. Create a shape as (2,3,4) Tensor , All elements are set to 0.
7. Create a shape as (2,3,4) Tensor , All elements are set to 1.
9. torch.tensor Create a (3,4) Two dimensional array of .
10. Realize the addition, subtraction, multiplication and division of the following two arrays
11. Exponentiate the following array
12. The following two arrays , Press the line / Splicing by columns
13. Judge whether each element of the following two homogeneous arrays is equal
14. Calculation X The sum of all elements in the array
15. Use arange Create a 3*1 Array of a and 1*2 Array of b
16. Try adding the above two arrays directly , View the situation .
19、 Modify two-dimensional array X The first 0 Xing He 1 All elements of the row are 12.
20、 take X Turn into numpy Assign to A, then A Turn into tensor In the form of B
21、 Output a Original number of 、 Character 、 floating-point
1. Import torch
2. Use arange Create a row vector x, This row vector contains the following elements 0 Before we start 12 It's an integer .
3. Through tensor shape Property to access the tensor x( Length along each axis ) Of shape
4. Just want to know the total number of elements in the tensor , You can check its size (size)
5. Put tensor x From shape to (12,) The row vector of is transformed into a shape of (3,4) Matrix .
6. Create a shape as (2,3,4) Tensor , All elements are set to 0.
7. Create a shape as (2,3,4) Tensor , All elements are set to 1.
8. Create a shape as (3,4) Tensor . Each of these elements has a mean value of 0、 The standard deviation is 1 The standard Gaussian distribution of ( Normal distribution ) Medium random sampling .
9. torch.tensor Create a (3,4) Two dimensional array of .
【 Operator 】
10. Realize the addition, subtraction, multiplication and division of the following two arrays
x = torch.tensor([1.0, 2, 4, 8])
y = torch.tensor([2, 2, 2, 2])11. Exponentiate the following array
x = torch.tensor([1.0, 2, 4, 8])12. The following two arrays , Press the line / Splicing by columns
X = torch.arange(12, dtype=torch.float32).reshape((3,4))
Y = torch.tensor([[2.0, 1, 4, 3], [1, 2, 3, 4], [4, 3, 2, 1]])13. Judge whether each element of the following two homogeneous arrays is equal
X = torch.arange(12, dtype=torch.float32).reshape((3,4))
Y = torch.tensor([[2.0, 1, 4, 3], [1, 2, 3, 4], [4, 3, 2, 1]])14. Calculation X The sum of all elements in the array
X = torch.arange(12, dtype=torch.float32).reshape((3,4))【 Broadcast mechanism 】
15. Use arange Create a 3*1 Array of a and 1*2 Array of b
16. Try adding the above two arrays directly , View the situation .
【 Index and slice 】
17. Take out the two-dimensional array X in choice The last line of elements 、 The second to third lines of elements
X = torch.arange(12, dtype=torch.float32).reshape((3,4))18、 Modify two-dimensional array X The first 1 Xing di 2 The value of the column is 9 and Write matrix
X = torch.arange(12, dtype=torch.float32).reshape((3,4))19、 Modify two-dimensional array X The first 0 Xing He 1 All elements of the row are 12.
X = torch.arange(12, dtype=torch.float32).reshape((3,4))【 Convert objects 】
20、 take X Turn into numpy Assign to A, then A Turn into tensor In the form of B
X = torch.arange(12, dtype=torch.float32).reshape((3,4))21、 Output a Original number of 、 Character 、 floating-point
a = torch.tensor([3.5])边栏推荐
- Typescript interface inheritance
- IDA中常见快捷键
- gym安装踩坑记录
- 使用U2-Net深层网络实现——证件照生成程序
- Some superficial understanding of word2vec
- leetcode-304:二维区域和检索 - 矩阵不可变
- When do you usually get grades in the soft exam? Online pedaling?
- 【安装系统】U盘安装系统教程,使用UltraISO制作U盘启动盘
- Application of OpenGL gllightfv function and related knowledge of light source
- What are the contents of the intermediate soft test, the software designer test, and the test outline?
猜你喜欢

香橙派OrangePi 4 LTS开发板通过Mini PCIE连接SATA硬盘的操作方法

Some superficial understanding of word2vec

软考中级有用吗??

Use load_ decathlon_ Datalist (Monai) fast loading JSON data

2022年7月10日“五心公益”活动通知+报名入口(二维码)

Is the soft test intermediate useful??

【推荐系统 01】Rechub

无法打开内核设备“\\.\VMCIDev\VMX”: 操作成功完成。是否在安装 VMware Workstation 后重新引导? 模块“DevicePowerOn”启动失败。 未能启动虚拟机。

枪出惊龙,众“锁”周之

深入分析ERC-4907协议的主要内容,思考此协议对NFT市场流动性意义!
随机推荐
优雅的 Controller 层代码
Schnuka: working principle of robot visual grasping machine visual grasping
Operation method of Orange Pie orangepi 4 lts development board connecting SATA hard disk through mini PCIe
如何顺利通过下半年的高级系统架构设计师?
BUUCTF---Reverse---reverse1
软考信息处理技术员有哪些备考资料与方法?
Gym installation pit records
使用U2-Net深层网络实现——证件照生成程序
小程序跳转H5,配置业务域名经验教程
【亲测可行】error while loading shared libraries的解决方案
The width of table is 4PX larger than that of tbody
SQL Server knowledge collection 11: Constraints
1321:【例6.3】删数问题(Noip1994)
打算参加安全方面工作,信息安全工程师怎么样,软考考试需要怎么准备?
[detailed explanation of Huawei machine test] tall and short people queue up
MONAI版本更新到 0.9 啦,看看有什么新功能
Pre knowledge reserve of TS type gymnastics to become an excellent TS gymnastics master
软考中级有用吗??
MySQL insert data create trigger fill UUID field value
深入理解Apache Hudi异步索引机制