当前位置:网站首页>Complete example of pytorch model saving +does pytorch model saving only save trainable parameters? Yes (+ solution)
Complete example of pytorch model saving +does pytorch model saving only save trainable parameters? Yes (+ solution)
2022-07-02 19:55:00 【FakeOccupational】
The test uses a liner model, There are more questions .pytorch Does model saving only save trainable parameters ?
save Model
# Import package
import glob
import os
import torch
import matplotlib.pyplot as plt
import random # For data iterators to generate random data
# Generate data set x1 Category 0,x2 Category 1
n_data = torch.ones(50, 2) # The basic form of data
x1 = torch.normal(2 * n_data, 1) # shape=(50, 2)
y1 = torch.zeros(50) # type 0 shape=(50, 1)
x2 = torch.normal(-2 * n_data, 1) # shape=(50, 2)
y2 = torch.ones(50) # type 1 shape=(50, 1)
# Be careful x, y The data form of data must be like the following (torch.cat Is consolidated data )
x = torch.cat((x1, x2), 0).type(torch.FloatTensor) y = torch.cat((y1, y2), 0).type(torch.FloatTensor) # Dataset Visualization plt.scatter(x.data.numpy()[:, 0], x.data.numpy()[:, 1], c=y.data.numpy(), s=100, lw=0, cmap='RdYlGn') plt.show() # data fetch : def data_iter(batch_size, x, y): num_examples = len(x) indices = list(range(num_examples))
random.shuffle(indices) # The reading order of samples is random
for i in range(0, num_examples, batch_size):
j = torch.LongTensor(indices[i: min(i + batch_size, num_examples)]) # The last time may be less than one batch
yield x.index_select(0, j), y.index_select(0, j)
#############################################################################################################
def saver(model_state_dict, optimizer_state_dict, model_path, epoch, max_to_save=30):
total_models = glob.glob(model_path + '*')
if len(total_models) >= max_to_save:
total_models.sort()
os.remove(total_models[0])
state_dict = {
}
state_dict["model_state_dict"] = model_state_dict
state_dict["optimizer_state_dict"] = optimizer_state_dict
torch.save(state_dict, model_path + 'h' + str(epoch))
print('models {} save successfully!'.format(model_path + 'hahaha' + str(epoch)))
################################################################################################################
import torch.nn as nn
import torch.optim as optim
class net(nn.Module):
def __init__(self, **kwargs):
super(net, self).__init__(**kwargs)
self.net = nn.Sequential(nn.Linear(2, 1), nn.ReLU())
def forward(self, x):
return self.net(x)
def loss(y_hat, y):
return (y_hat - y.view(y_hat.size())) ** 2 / 2
def accuracy(y_hat, y): #@save
""" Calculate the correct number of predictions ."""
cmp = y_hat.type(y.dtype) > 0.5 # Greater than 0.5 Category 1
result=cmp.type(y.dtype)
acc = 1-float(((result-y).sum())/ len(y))
return acc;
lr = 0.03
num_epochs = 3 # The number of iterations
batch_size = 10 # Batch size
model = net()
params = list(model.parameters())
optimizer = torch.optim.Adam(params, 1e-4)
for epoch in range(num_epochs):
for X, y_train in data_iter(batch_size, x, y):
optimizer.zero_grad()
l = loss(model(X), y_train).sum() # l It's about small batches X and y The loss of
l.backward(retain_graph=True)
optimizer.step()
print(l)
saver(model.state_dict(), optimizer.state_dict(), "./", epoch + 1, max_to_save=100)
load Model
# Import package
import glob
import os
import torch
import matplotlib.pyplot as plt
import random # For data iterators to generate random data
# Generate data set x1 Category 0,x2 Category 1
n_data = torch.ones(50, 2) # The basic form of data
x1 = torch.normal(2 * n_data, 1) # shape=(50, 2)
y1 = torch.zeros(50) # type 0 shape=(50, 1)
x2 = torch.normal(-2 * n_data, 1) # shape=(50, 2)
y2 = torch.ones(50) # type 1 shape=(50, 1)
# Be careful x, y The data form of data must be like the following (torch.cat Is consolidated data )
x = torch.cat((x1, x2), 0).type(torch.FloatTensor) y = torch.cat((y1, y2), 0).type(torch.FloatTensor) # Dataset Visualization plt.scatter(x.data.numpy()[:, 0], x.data.numpy()[:, 1], c=y.data.numpy(), s=100, lw=0, cmap='RdYlGn') plt.show() # data fetch : def data_iter(batch_size, x, y): num_examples = len(x) indices = list(range(num_examples))
random.shuffle(indices) # The reading order of samples is random
for i in range(0, num_examples, batch_size):
j = torch.LongTensor(indices[i: min(i + batch_size, num_examples)]) # The last time may be less than one batch
yield x.index_select(0, j), y.index_select(0, j)
#############################################################################################################
def saver(model_state_dict, optimizer_state_dict, model_path, epoch, max_to_save=30):
total_models = glob.glob(model_path + '*')
if len(total_models) >= max_to_save:
total_models.sort()
os.remove(total_models[0])
state_dict = {
}
state_dict["model_state_dict"] = model_state_dict
state_dict["optimizer_state_dict"] = optimizer_state_dict
torch.save(state_dict, model_path + 'h' + str(epoch))
print('models {} save successfully!'.format(model_path + 'hahaha' + str(epoch)))
################################################################################################################
import torch.nn as nn
import torch.optim as optim
class net(nn.Module):
def __init__(self, **kwargs):
super(net, self).__init__(**kwargs)
self.net = nn.Sequential(nn.Linear(2, 1), nn.ReLU())
def forward(self, x):
return self.net(x)
def loss(y_hat, y):
return (y_hat - y.view(y_hat.size())) ** 2 / 2
def accuracy(y_hat, y): #@save
""" Calculate the correct number of predictions ."""
cmp = y_hat.type(y.dtype) > 0.5 # Greater than 0.5 Category 1
result=cmp.type(y.dtype)
acc = 1-float(((result-y).sum())/ len(y))
return acc;
lr = 0.03
num_epochs = 3 # The number of iterations
batch_size = 10 # Batch size
model = net()
params = list(model.parameters())
optimizer = torch.optim.Adam(params, 1e-4)
# for epoch in range(num_epochs):
# for X, y_train in data_iter(batch_size, x, y):
# optimizer.zero_grad()
# l = loss(model(X), y_train).sum() # l It's about small batches X and y The loss of
# l.backward(retain_graph=True)
# optimizer.step()
# print(l)
# saver(model.state_dict(), optimizer.state_dict(), "./", epoch + 1, max_to_save=100)
def loader(model_path):
state_dict = torch.load(model_path)
model_state_dict = state_dict["model_state_dict"]
optimizer_state_dict = state_dict["optimizer_state_dict"]
return model_state_dict, optimizer_state_dict
model_state_dict, optimizer_state_dict = loader("h1")
model.load_state_dict(model_state_dict)
optimizer.load_state_dict(optimizer_state_dict)
print('pretrained models loaded!')
pytorch Does model saving only save trainable parameters ? yes
class net(nn.Module):
def __init__(self, **kwargs):
super(net, self).__init__(**kwargs)
self.net = nn.Sequential(nn.Linear(2, 1), nn.ReLU())
self.notrain= torch.rand((64, 64), dtype=torch.float)
def forward(self, x):
return self.net(x)

Solution
class net(nn.Module):
def __init__(self, **kwargs):
super(net, self).__init__(**kwargs)
self.net = nn.Sequential(nn.Linear(2, 1), nn.ReLU())
# self.notrain = torch.rand((64, 64), dtype=torch.float)
self.notrain = torch.nn.Parameter(torch.ones(64, 64))
def forward(self, x):
return self.net(x)
for epoch in range(num_epochs):
for X, y_train in data_iter(batch_size, x, y):
optimizer.zero_grad()
l = loss(model(X), y_train).sum() # l It's about small batches X and y The loss of
l.backward(retain_graph=True)
optimizer.step()
print(l)
model.notrain.data = model.notrain.data+2
saver(model.state_dict(), optimizer.state_dict(), "./", epoch + 1, max_to_save=100)
Reference and more
PyTorch DataLoader Of bug : Random mask Or random selection of data bug
边栏推荐
- HDL design peripheral tools to reduce errors and help you take off!
- pytorch 模型保存的完整例子+pytorch 模型保存只保存可训练参数吗?是(+解决方案)
- AcWing 341. Optimal trade solution (shortest path, DP)
- Py's interpret: a detailed introduction to interpret, installation, and case application
- 嵌入式(PLD) 系列,EPF10K50RC240-3N 可编程逻辑器件
- Kt148a voice chip IC user end self replacement voice method, upper computer
- Google Earth Engine(GEE)——Landsat 9影像全波段影像下载(北京市为例)
- Implementation of online shopping mall system based on SSM
- Educational codeforces round 129 (rated for Div. 2) supplementary problem solution
- 451 implementation of memcpy, memmove and memset
猜你喜欢

Dictionaries

SQLite 3.39.0 发布,支持右外连接和全外连接

After writing 100000 lines of code, I sent a long article roast rust

JASMINER X4 1U深度拆解,揭开高效省电背后的秘密

嵌入式(PLD) 系列,EPF10K50RC240-3N 可编程逻辑器件

AcWing 1126. Minimum cost solution (shortest path Dijkstra)

Génération automatique de fichiers d'annotation d'images vgg

外包干了三年,废了...

Data Lake (XII): integration of spark3.1.2 and iceberg0.12.1
![[daily question] 241 Design priorities for operational expressions](/img/27/4ad1a557e308e4383335f51a51adb0.png)
[daily question] 241 Design priorities for operational expressions
随机推荐
SQLite 3.39.0 发布,支持右外连接和全外连接
Common problems and description of kt148a voice chip IC development
PXE installation "recommended collection"
Think about the huge changes caused by variables
Esp32c3 crash analysis
AcWing 383. Sightseeing problem solution (shortest circuit)
In depth understanding of modern web browsers (I)
At compilation environment setup -win
[Chongqing Guangdong education] reference materials for labor education of college students in Nanjing University
GCC: Graph Contrastive Coding for Graph Neural NetworkPre-Training
How to avoid duplicate data in gaobingfa?
AcWing 181. Turnaround game solution (search ida* search)
R language uses econcharts package to create microeconomic or macroeconomic maps, and indifference function to visualize indifference curve
AcWing 1125. Cattle travel problem solution (shortest path, diameter)
编写完10万行代码,我发了篇长文吐槽Rust
Postman下载安装
After writing 100000 lines of code, I sent a long article roast rust
KT148A语音芯片ic的硬件设计注意事项
From 20s to 500ms, I used these three methods
面试经验总结,为你的offer保驾护航,满满的知识点