当前位置:网站首页>Complete example of pytorch model saving +does pytorch model saving only save trainable parameters? Yes (+ solution)
Complete example of pytorch model saving +does pytorch model saving only save trainable parameters? Yes (+ solution)
2022-07-02 19:55:00 【FakeOccupational】
The test uses a liner model, There are more questions .pytorch Does model saving only save trainable parameters ?
save Model
# Import package
import glob
import os
import torch
import matplotlib.pyplot as plt
import random # For data iterators to generate random data
# Generate data set x1 Category 0,x2 Category 1
n_data = torch.ones(50, 2) # The basic form of data
x1 = torch.normal(2 * n_data, 1) # shape=(50, 2)
y1 = torch.zeros(50) # type 0 shape=(50, 1)
x2 = torch.normal(-2 * n_data, 1) # shape=(50, 2)
y2 = torch.ones(50) # type 1 shape=(50, 1)
# Be careful x, y The data form of data must be like the following (torch.cat Is consolidated data )
x = torch.cat((x1, x2), 0).type(torch.FloatTensor) y = torch.cat((y1, y2), 0).type(torch.FloatTensor) # Dataset Visualization plt.scatter(x.data.numpy()[:, 0], x.data.numpy()[:, 1], c=y.data.numpy(), s=100, lw=0, cmap='RdYlGn') plt.show() # data fetch : def data_iter(batch_size, x, y): num_examples = len(x) indices = list(range(num_examples))
random.shuffle(indices) # The reading order of samples is random
for i in range(0, num_examples, batch_size):
j = torch.LongTensor(indices[i: min(i + batch_size, num_examples)]) # The last time may be less than one batch
yield x.index_select(0, j), y.index_select(0, j)
#############################################################################################################
def saver(model_state_dict, optimizer_state_dict, model_path, epoch, max_to_save=30):
total_models = glob.glob(model_path + '*')
if len(total_models) >= max_to_save:
total_models.sort()
os.remove(total_models[0])
state_dict = {
}
state_dict["model_state_dict"] = model_state_dict
state_dict["optimizer_state_dict"] = optimizer_state_dict
torch.save(state_dict, model_path + 'h' + str(epoch))
print('models {} save successfully!'.format(model_path + 'hahaha' + str(epoch)))
################################################################################################################
import torch.nn as nn
import torch.optim as optim
class net(nn.Module):
def __init__(self, **kwargs):
super(net, self).__init__(**kwargs)
self.net = nn.Sequential(nn.Linear(2, 1), nn.ReLU())
def forward(self, x):
return self.net(x)
def loss(y_hat, y):
return (y_hat - y.view(y_hat.size())) ** 2 / 2
def accuracy(y_hat, y): #@save
""" Calculate the correct number of predictions ."""
cmp = y_hat.type(y.dtype) > 0.5 # Greater than 0.5 Category 1
result=cmp.type(y.dtype)
acc = 1-float(((result-y).sum())/ len(y))
return acc;
lr = 0.03
num_epochs = 3 # The number of iterations
batch_size = 10 # Batch size
model = net()
params = list(model.parameters())
optimizer = torch.optim.Adam(params, 1e-4)
for epoch in range(num_epochs):
for X, y_train in data_iter(batch_size, x, y):
optimizer.zero_grad()
l = loss(model(X), y_train).sum() # l It's about small batches X and y The loss of
l.backward(retain_graph=True)
optimizer.step()
print(l)
saver(model.state_dict(), optimizer.state_dict(), "./", epoch + 1, max_to_save=100)
load Model
# Import package
import glob
import os
import torch
import matplotlib.pyplot as plt
import random # For data iterators to generate random data
# Generate data set x1 Category 0,x2 Category 1
n_data = torch.ones(50, 2) # The basic form of data
x1 = torch.normal(2 * n_data, 1) # shape=(50, 2)
y1 = torch.zeros(50) # type 0 shape=(50, 1)
x2 = torch.normal(-2 * n_data, 1) # shape=(50, 2)
y2 = torch.ones(50) # type 1 shape=(50, 1)
# Be careful x, y The data form of data must be like the following (torch.cat Is consolidated data )
x = torch.cat((x1, x2), 0).type(torch.FloatTensor) y = torch.cat((y1, y2), 0).type(torch.FloatTensor) # Dataset Visualization plt.scatter(x.data.numpy()[:, 0], x.data.numpy()[:, 1], c=y.data.numpy(), s=100, lw=0, cmap='RdYlGn') plt.show() # data fetch : def data_iter(batch_size, x, y): num_examples = len(x) indices = list(range(num_examples))
random.shuffle(indices) # The reading order of samples is random
for i in range(0, num_examples, batch_size):
j = torch.LongTensor(indices[i: min(i + batch_size, num_examples)]) # The last time may be less than one batch
yield x.index_select(0, j), y.index_select(0, j)
#############################################################################################################
def saver(model_state_dict, optimizer_state_dict, model_path, epoch, max_to_save=30):
total_models = glob.glob(model_path + '*')
if len(total_models) >= max_to_save:
total_models.sort()
os.remove(total_models[0])
state_dict = {
}
state_dict["model_state_dict"] = model_state_dict
state_dict["optimizer_state_dict"] = optimizer_state_dict
torch.save(state_dict, model_path + 'h' + str(epoch))
print('models {} save successfully!'.format(model_path + 'hahaha' + str(epoch)))
################################################################################################################
import torch.nn as nn
import torch.optim as optim
class net(nn.Module):
def __init__(self, **kwargs):
super(net, self).__init__(**kwargs)
self.net = nn.Sequential(nn.Linear(2, 1), nn.ReLU())
def forward(self, x):
return self.net(x)
def loss(y_hat, y):
return (y_hat - y.view(y_hat.size())) ** 2 / 2
def accuracy(y_hat, y): #@save
""" Calculate the correct number of predictions ."""
cmp = y_hat.type(y.dtype) > 0.5 # Greater than 0.5 Category 1
result=cmp.type(y.dtype)
acc = 1-float(((result-y).sum())/ len(y))
return acc;
lr = 0.03
num_epochs = 3 # The number of iterations
batch_size = 10 # Batch size
model = net()
params = list(model.parameters())
optimizer = torch.optim.Adam(params, 1e-4)
# for epoch in range(num_epochs):
# for X, y_train in data_iter(batch_size, x, y):
# optimizer.zero_grad()
# l = loss(model(X), y_train).sum() # l It's about small batches X and y The loss of
# l.backward(retain_graph=True)
# optimizer.step()
# print(l)
# saver(model.state_dict(), optimizer.state_dict(), "./", epoch + 1, max_to_save=100)
def loader(model_path):
state_dict = torch.load(model_path)
model_state_dict = state_dict["model_state_dict"]
optimizer_state_dict = state_dict["optimizer_state_dict"]
return model_state_dict, optimizer_state_dict
model_state_dict, optimizer_state_dict = loader("h1")
model.load_state_dict(model_state_dict)
optimizer.load_state_dict(optimizer_state_dict)
print('pretrained models loaded!')
pytorch Does model saving only save trainable parameters ? yes
class net(nn.Module):
def __init__(self, **kwargs):
super(net, self).__init__(**kwargs)
self.net = nn.Sequential(nn.Linear(2, 1), nn.ReLU())
self.notrain= torch.rand((64, 64), dtype=torch.float)
def forward(self, x):
return self.net(x)
Solution
class net(nn.Module):
def __init__(self, **kwargs):
super(net, self).__init__(**kwargs)
self.net = nn.Sequential(nn.Linear(2, 1), nn.ReLU())
# self.notrain = torch.rand((64, 64), dtype=torch.float)
self.notrain = torch.nn.Parameter(torch.ones(64, 64))
def forward(self, x):
return self.net(x)
for epoch in range(num_epochs):
for X, y_train in data_iter(batch_size, x, y):
optimizer.zero_grad()
l = loss(model(X), y_train).sum() # l It's about small batches X and y The loss of
l.backward(retain_graph=True)
optimizer.step()
print(l)
model.notrain.data = model.notrain.data+2
saver(model.state_dict(), optimizer.state_dict(), "./", epoch + 1, max_to_save=100)
Reference and more
PyTorch DataLoader Of bug : Random mask Or random selection of data bug
边栏推荐
- NMF-matlab
- Introduction to mongodb chapter 03 basic concepts of mongodb
- From 20s to 500ms, I used these three methods
- NMF-matlab
- Pytorch版本、CUDA版本与显卡驱动版本的对应关系
- 解决方案:VS2017 无法打开源文件 stdio.h main.h 等头文件[通俗易懂]
- 定了,就是它!
- KT148A语音芯片ic的用户端自己更换语音的方法,上位机
- C language linked list -- to be added
- [NLP] a detailed generative text Abstract classic paper pointer generator
猜你喜欢
随机推荐
Py之interpret:interpret的简介、安装、案例应用之详细攻略
Automatic reading of simple books
攻防世界pwn题:Recho
c语言链表--待补充
MySQL function
AcWing 341. Optimal trade solution (shortest path, DP)
Detailed tutorial on installing stand-alone redis
AcWing 181. Turnaround game solution (search ida* search)
【Hot100】22. 括号生成
ShardingSphere-JDBC5.1.2版本关于SELECT LAST_INSERT_ID()本人发现还是存在路由问题
AcWing 1125. 牛的旅行 题解(最短路、直径)
c语言里怎么设立优先级,细说C语言优先级
Istio deployment: quickly start microservices,
[JS] get the search parameters of URL in hash mode
多端小程序开发有什么好处?覆盖百度小程序抖音小程序微信小程序开发,抢占多平台流量红利
字典
Detailed explanation of VBScript (I)
checklistbox控件用法总结
Postman接口测试实战,这5个问题你一定要知道
AcWing 1126. Minimum cost solution (shortest path Dijkstra)