当前位置:网站首页>从39个kaggle竞赛中总结出来的图像分割的Tips和Tricks

从39个kaggle竞赛中总结出来的图像分割的Tips和Tricks

2022-07-05 12:33:00 智源社区

作者参加了39个Kaggle比赛,按照整个比赛的顺序,总结了赛前数据的处理,模型的训练,以及后处理等可以助力大家的tips和tricks,非常多的技巧和经验,现在全部分享给大家。

想象一下,如果你能得到所有的tips和tricks,你需要去参加一个Kaggle比赛。我已经超过39个Kaggle比赛,包括:

  • Data Science Bowl 2017 – $1,000,000
  • Intel & MobileODT Cervical Cancer Screening – $100,000
  • 2018 Data Science Bowl – $100,000
  • Airbus Ship Detection Challenge – $60,000
  • Planet: Understanding the Amazon from Space – $60,000
  • APTOS 2019 Blindness Detection – $50,000
  • Human Protein Atlas Image Classification – $37,000
  • SIIM-ACR Pneumothorax Segmentation – $30,000
  • Inclusive Images Challenge – $25,000

现在把这些知识都挖出来给你们!

 

外部数据

  • 使用 LUng Node Analysis Grand Challenge 数据,因为这个数据集包含了来自放射学的标注细节。
  • 使用 LIDC-IDRI 数据,因为它具有找到了肿瘤的所有放射学的描述。
  • 使用Flickr CC,维基百科通用数据集
  • 使用Human Protein Atlas Dataset
  • 使用IDRiD数据集

 

数据探索和直觉

  • 使用0.5的阈值对3D分割进行聚类
  • 确认在训练集和测试集的标签分布上有没有不一样的地方

 

预处理

  • 使用DoG(Difference of Gaussian)方法进行blob检测,使用skimage中的方法。
  • 使用基于patch的输入进行训练,为了减少训练时间。
  • 使用cudf加载数据,不要用Pandas,因为读数据更快。
  • 确保所有的图像具有相同的方向。
  • 在进行直方图均衡化的时候,使用对比度限制。
  • 使用OpenCV进行通用的图像预处理。
  • 使用自动化主动学习,添加手工标注。
  • 将所有的图像缩放成相同的分辨率,可以使用相同的模型来扫描不同的厚度。
  • 将扫描图像归一化为3D的numpy数组。
  • 对单张图像使用暗通道先验方法进行图像去雾。
  • 将所有图像转化成Hounsfield单位(放射学中的概念)。
  • 使用RGBY的匹配系数来找到冗余的图像。
  • 开发一个采样器,让标签更加的均衡。
  • 对测试图像打伪标签来提升分数。
  • 将图像/Mask降采样到320x480。
  • 直方图均衡化(CLAHE)的时候使用kernel size为32×32
  • 将DCM转化为PNG。
  • 当有冗余图像的时候,为每个图像计算md5 hash值。

 

数据增强

  • 使用 albumentations 进行数据增强。
  • 使用随机90度旋转。
  • 使用水平翻转,上下翻转。
  • 可以尝试较大的几何变换:弹性变换,仿射变换,样条仿射变换,枕形畸变。
  • 使用随机HSV。
  • 使用loss-less增强来进行泛化,防止有用的图像信息出现大的loss。
  • 应用channel shuffling。
  • 基于类别的频率进行数据增强。
  • 使用高斯噪声。
  • 对3D图像使用lossless重排来进行数据增强。
  • 0到45度随机旋转。
  • 从0.8到1.2随机缩放。
  • 亮度变换。
  • 随机变化hue和饱和度。
  • 使用D4:https://en.wikipedia.org/wiki/Dihedral_group增强。
  • 在进行直方图均衡化的时候使用对比度限制。
  • 使用AutoAugment:https://arxiv.org/pdf/1805.09501.pdf增强策略。

 

模型

结构

  • 使用U-net作为基础结构,并调整以适应3D的输入。
  • 使用自动化主动学习并添加人工标注。
  • 使用inception-ResNet v2 architecture结构使用不同的感受野训练特征。
  • 使用Siamese networks进行对抗训练。
  • 使用_ResNet50_, XceptionInception ResNet v2 x 5,最后一层用全连接。
  • 使用global max-pooling layer,无论什么输入尺寸,返回固定长度的输出。
  • 使用stacked dilated convolutions。

 

VoxelNet。

  • 在LinkNet的跳跃连接中将相加替换为拼接和conv1x1。
  • Generalized mean pooling。
  • 使用224x224x3的输入,用Keras NASNetLarge从头训练模型。
  • 使用3D卷积网络。
  • 使用ResNet152作为预训练的特征提取器。
  • 将ResNet的最后的全连接层替换为3个使用dropout的全连接层。
  • 在decoder中使用转置卷积。
  • 使用VGG作为基础结构。
  • 使用C3D网络,使用adjusted receptive fields,在网络的最后使用64 unit bottleneck layer 。
  • 使用带预训练权重的UNet类型的结构在8bit RGB输入图像上提升收敛性和二元分割的性能。
  • 使用LinkNet,因为又快又省内存。

MASKRCNN

  • BN-Inception
  • Fast Point R-CNN
  • Seresnext
  • UNet and Deeplabv3
  • Faster RCNN
  • SENet154
  • ResNet152
  • NASNet-A-Large
  • EfficientNetB4
  • ResNet101
  • GAPNet
  • PNASNet-5-Large
  • Densenet121
  • AC-GAN
  • XceptionNet (96), XceptionNet (299), Inception v3 (139), InceptionResNet v2 (299), DenseNet121 (224)
  • AlbuNet (resnet34) from ternausnets
  • SpaceNet
  • Resnet50 from selim_sef SpaceNet 4
  • SCSEUnet (seresnext50) from selim_sef SpaceNet 4
  • A custom Unet and Linknet architecture
  • FPNetResNet50 (5 folds)
  • FPNetResNet101 (5 folds)
  • FPNetResNet101 (7 folds with different seeds)
  • PANetDilatedResNet34 (4 folds)
  • PANetResNet50 (4 folds)

 

硬件设置

  • Use of the AWS GPU instance p2.xlarge with a NVIDIA K80 GPU
  • Pascal Titan-X GPU
  • Use of 8 TITAN X GPUs
  • 6 GPUs: 2_1080Ti + 4_1080
  • Server with 8×NVIDIA Tesla P40, 256 GB RAM and 28 CPU cores
  • Intel Core i7 5930k, 2×1080, 64 GB of RAM, 2x512GB SSD, 3TB HDD
  • GCP 1x P100, 8x CPU, 15 GB RAM, SSD or 2x P100, 16x CPU, 30 GB RAM
  • NVIDIA Tesla P100 GPU with 16GB of RAM
  • Intel Core i7 5930k, 2×1080, 64 GB of RAM, 2x512GB SSD, 3TB HDD
  • 980Ti GPU, 2600k CPU, and 14GB RAM

 

损失函数

  • Dice Coefficient ,因为在不均衡数据上工作很好。
  • Weighted boundary loss 目的是减少预测的分割和ground truth之间的距离。
  • MultiLabelSoftMarginLoss 使用one-versus-all损失优化多标签。
  • Balanced cross entropy (BCE) with logit loss 通过系数来分配正负样本的权重。
  • Lovasz 基于sub-modular损失的convex Lovasz扩展来直接优化平均IoU损失。
  • FocalLoss + Lovasz 将Focal loss和Lovasz losses相加得到。
  • Arc margin loss 通过添加margin来最大化人脸类别的可分性。
  • Npairs loss 计算y_true 和 y_pred之间的npairs损失。
  • 将BCE和Dice loss组合起来。
  • LSEP – 一种成对的排序损失,处处平滑因此容易优化。
  • Center loss 同时学习每个类别的特征中心,并对距离特征中心距离太远的样本进行惩罚。
  • Ring Loss 对标准的损失函数进行了增强,如Softmax。
  • Hard triplet loss 训练网络进行特征嵌入,最大化不同类别之间的特征的距离。
  • 1 + BCE – Dice 包含了BCE和DICE损失再加1。
  • Binary cross-entropy –  log(dice) 二元交叉熵减去dice loss的log。
  • BCE, dice和focal 损失的组合。
  • BCE + DICE - Dice损失通过计算平滑的dice系数得到。
  • Focal loss with Gamma 2 标准交叉熵损失的升级。
  • BCE + DICE + Focal – 3种损失相加。
  • Active Contour Loss 加入了面积和尺寸信息,并集成到深度学习模型中。
  • 1024 * BCE(results, masks) + BCE(cls, cls_target)
  • Focal + kappa – Kappa是一种用于多类别分类的损失,这里和Focal loss相加。
  • ArcFaceLoss —  用于人脸识别的Additive Angular Margin Loss。
  • soft Dice trained on positives only – 使用预测概率的Soft Dice。
  • 2.7 * BCE(pred_mask, gt_mask) + 0.9 * DICE(pred_mask, gt_mask) + 0.1 * BCE(pred_empty, gt_empty) 一种自定义损失。
  • nn.SmoothL1Loss()
  • 使用Mean Squared Error objective function,在某些场景下比二元交叉熵损失好。
原网站

版权声明
本文为[智源社区]所创,转载请带上原文链接,感谢
https://hub.baai.ac.cn/views/18622