当前位置:网站首页>Prometheus监控Harbor(二进制版)

Prometheus监控Harbor(二进制版)

2022-08-03 23:31:00 李大白

你好!我是李大白,今天分享的是基于Prometheus监控harbor服务。

在之前的文章中分别介绍了harbor基于离线安装的高可用汲取设计和部署。那么,如果我们的harbor服务主机或者harbor服务及组件出现异常,我们该如何快速处理呢?

Harbor v2.2及以上版本支持配置Prometheus监控Harbor,所以你的harbor版本必须要大于2.2。

本篇文章以二进制的方式简单的部署Prometheus相关服务,可以帮助你快速的的实现Prometheus对harbor的监控。


Prometheus监控Harbor(二进制版)

一、部署说明

在harbor服务主机上部署:

  • prometheus
  • node-exporter
  • grafana
  • alertmanager

harbor版本:2.4.2
主机:192.168.2.22

二、Harbor启用metrics服务

2.1 停止Harbor服务

$ cd /app/harbor              
$ docker-compose  down

2.2 修改harbor.yml配置

​ 修改harbor的配置文件中metrics参数,启用harbor-exporter组件。

$ cat harbor.yml
### metrics配置部分
metric:
  enabled: true     #是否启用,需要修改为true(启用)
  port: 9099       #默认的端口为9090,与prometheus的端口会冲突(所以需要修改下)
  path: /metrics

对harbor不熟悉的建议对配置文件备份下!

2.3 配置注入组件

$ ./prepre

2.4 install安装harbor

$ ./install.sh  --with-notary  --with-trivy  --with-chartmuseum
$ docker-compose ps
NAME          COMMAND             SERVICE       STATUS            PORTS
chartmuseum     "./docker-entrypoint…"   chartmuseum    running (healthy)   
harbor-core     "/harbor/entrypoint.…"   core         running (healthy)   
harbor-db      "/docker-entrypoint.…"   postgresql     running (healthy)   
harbor-exporter  "/harbor/entrypoint.…"   exporter      running             

可以看到多了harbor-exporter组件。

三、Harbor指标说明

在前面启用了harbor-exporter监控组件后,可以通过curl命令去查看harbor暴露了哪些指标。

harbor暴露了以下4个关键组件的指标数据。

3.1 harbor-exporter组件指标

exporter组件指标与Harbor 实例配置相关,并从 Harbor 数据库中收集一些数据。

指标可在<harbor_instance>:<metrics_port>/<metrics_path>查看

$ curl  http://192.168.2.22:9099/metrics

1)harbor_project_total

harbor_project_total 采集了公共和私人项目总共数量。

$ curl  http://192.168.2.22:9099/metrics | grep harbor_project_total
# HELP harbor_project_total Total projects number
# TYPE harbor_project_total gauge
harbor_project_total{public="true"} 1   # 公共项目的数量为“1”
harbor_project_total{public="false"} 1     #私有项目的数量

2)harbor_project_repo_total

项目(Project)中的存储库总数。

$ curl  http://192.168.2.22:9099/metrics | grep harbor_project_repo_total
# HELP harbor_project_repo_total Total project repos number
# TYPE harbor_project_repo_total gauge
harbor_project_repo_total{project_name="library",public="true"} 0

3)harbor_project_member_total

项目中的成员总数

$ curl  http://192.168.2.22:9099/metrics | grep harbor_project_member_total
# HELP harbor_project_member_total Total members number of a project
# TYPE harbor_project_member_total gauge
harbor_project_member_total{project_name="library"} 1  #项目library下有“1”个用户

4)harbor_project_quota_usage_byte

​ 一个项目的总使用资源

$ curl  http://192.168.2.22:9099/metrics | grep harbor_project_quota_usage_byte
# HELP harbor_project_quota_usage_byte The used resource of a project
# TYPE harbor_project_quota_usage_byte gauge
harbor_project_quota_usage_byte{project_name="library"} 0

5)harbor_project_quota_byte

​ 项目中设置的配额

$ curl  http://192.168.2.22:9099/metrics | grep harbor_project_quota_byte
# HELP harbor_project_quota_byte The quota of a project
# TYPE harbor_project_quota_byte gauge
harbor_project_quota_byte{project_name="library"} -1   #-1 表示不限制

6)harbor_artifact_pulled

项目中镜像拉取的总数

$ curl  http://192.168.2.22:9099/metrics | grep harbor_artifact_pulled
# HELP harbor_artifact_pulled The pull number of an artifact
# TYPE harbor_artifact_pulled gauge
harbor_artifact_pulled{project_name="library"} 0

7)harbor_project_artifact_total

项目中的工件类型总数,artifact_type , project_name, public ( true, false)

$ curl  http://192.168.2.22:9099/metrics | grep harbor_project_artifact_total

8)harbor_health

 Harbor状态
$ curl  http://192.168.2.22:9099/metrics | grep harbor_health
# HELP harbor_health Running status of Harbor
# TYPE harbor_health gauge
harbor_health 1  #1表示正常,0表示异常

9)harbor_system_info

​ Harbor 实例的信息,auth_mode ( db_auth, ldap_auth, uaa_auth, http_auth, oidc_auth),harbor_version, self_registration( true, false)

$ curl  http://192.168.2.22:9099/metrics | grep harbor_system_info
# HELP harbor_system_info Information of Harbor system
# TYPE harbor_system_info gauge
harbor_system_info{auth_mode="db_auth",harbor_version="v2.4.2-ef2e2e56",self_registration="false"} 1

10)harbor_up

Harbor组件运行状态,组件 ( chartmuseum, core, database, jobservice, portal, redis, registry, registryctl, trivy)

$ curl  http://192.168.2.22:9099/metrics | grep harbor_up
harbor_up Running status of harbor component
# TYPE harbor_up gauge
harbor_up{component="chartmuseum"} 1
harbor_up{component="core"} 1
harbor_up{component="database"} 1
harbor_up{component="jobservice"} 1
harbor_up{component="portal"} 1
harbor_up{component="redis"} 1
harbor_up{component="registry"} 1
harbor_up{component="registryctl"} 1
harbor_up{component="trivy"} 1   #Trivy扫描器运行状态

11)harbor_task_queue_size

队列中每种类型的任务总数,

$ curl  http://192.168.2.22:9099/metrics | grep harbor_task_queue_size
# HELP harbor_task_queue_size Total number of tasks
# TYPE harbor_task_queue_size gauge
harbor_task_queue_size{type="DEMO"} 0
harbor_task_queue_size{type="GARBAGE_COLLECTION"} 0
harbor_task_queue_size{type="IMAGE_GC"} 0
harbor_task_queue_size{type="IMAGE_REPLICATE"} 0
harbor_task_queue_size{type="IMAGE_SCAN"} 0
harbor_task_queue_size{type="IMAGE_SCAN_ALL"} 0
harbor_task_queue_size{type="P2P_PREHEAT"} 0
harbor_task_queue_size{type="REPLICATION"} 0
harbor_task_queue_size{type="RETENTION"} 0
harbor_task_queue_size{type="SCHEDULER"} 0
harbor_task_queue_size{type="SLACK"} 0
harbor_task_queue_size{type="WEBHOOK"} 0

12)harbor_task_queue_latency

​ 多久前要处理的下一个作业按类型排入队列

$ curl  http://192.168.2.22:9099/metrics | grep harbor_task_queue_latency
# HELP harbor_task_queue_latency how long ago the next job to be processed was enqueued
# TYPE harbor_task_queue_latency gauge
harbor_task_queue_latency{type="DEMO"} 0
harbor_task_queue_latency{type="GARBAGE_COLLECTION"} 0
harbor_task_queue_latency{type="IMAGE_GC"} 0
harbor_task_queue_latency{type="IMAGE_REPLICATE"} 0
harbor_task_queue_latency{type="IMAGE_SCAN"} 0
harbor_task_queue_latency{type="IMAGE_SCAN_ALL"} 0
harbor_task_queue_latency{type="P2P_PREHEAT"} 0
harbor_task_queue_latency{type="REPLICATION"} 0
harbor_task_queue_latency{type="RETENTION"} 0
harbor_task_queue_latency{type="SCHEDULER"} 0
harbor_task_queue_latency{type="SLACK"} 0
harbor_task_queue_latency{type="WEBHOOK"} 0

13)harbor_task_scheduled_total

计划任务数

$ curl  http://192.168.2.22:9099/metrics | grep harbor_task_scheduled_total
# HELP harbor_task_scheduled_total total number of scheduled job
# TYPE harbor_task_scheduled_total gauge
harbor_task_scheduled_total 0

14)harbor_task_concurrency

池(Total)上每种类型的并发任务总数

$ curl  http://192.168.2.22:9099/metrics | grep harbor_task_concurrency
harbor_task_concurrency{pool="d4053262b74f0a7b83bc6add",type="GARBAGE_COLLECTION"} 0

3.2 harbor-core组件指标

以下是从 Harbor core组件中提取的指标,获取格式:

<harbor_instance>:<metrics_port>/<metrics_path>?comp=core.

1)harbor_core_http_inflight_requests

请求总数,操作(Harbor API operationId中的值。一些遗留端点没有,因此标签值为)operationId``unknown

harbor-core组件的指标

$ curl  http://192.168.2.22:9099/metrics?comp=core |  grep harbor_core_http_inflight_requests
# HELP harbor_core_http_inflight_requests The total number of requests
# TYPE harbor_core_http_inflight_requests gauge
harbor_core_http_inflight_requests 0

2)harbor_core_http_request_duration_seconds

​ 请求的持续时间,

​ 方法 ( GET, POST, HEAD, PATCH, PUT), 操作 ( Harbor APIoperationId中的 值。一些遗留端点没有, 所以标签值为), 分位数operationId``unknown

$ curl  http://192.168.2.22:9099/metrics?comp=core |  grep harbor_core_http_request_duration_seconds
# HELP harbor_core_http_request_duration_seconds The time duration of the requests
# TYPE harbor_core_http_request_duration_seconds summary
harbor_core_http_request_duration_seconds{method="GET",operation="GetHealth",quantile="0.5"} 0.001797115
harbor_core_http_request_duration_seconds{method="GET",operation="GetHealth",quantile="0.9"} 0.010445204
harbor_core_http_request_duration_seconds{method="GET",operation="GetHealth",quantile="0.99"} 0.010445204

3)harbor_core_http_request_total

​ 请求总数

​ 方法(GET, POST, HEAD, PATCH, PUT),操作([Harbor API operationId中的 值。一些遗留端点没有,因此标签值为)operationId``unknown

$ curl  http://192.168.2.22:9099/metrics?comp=core |  grep harbor_core_http_request_total
# HELP harbor_core_http_request_total The total number of requests
# TYPE harbor_core_http_request_total counter
harbor_core_http_request_total{code="200",method="GET",operation="GetHealth"} 14
harbor_core_http_request_total{code="200",method="GET",operation="GetInternalconfig"} 1
harbor_core_http_request_total{code="200",method="GET",operation="GetPing"} 176
harbor_core_http_request_total{code="200",method="GET",operation="GetSystemInfo"} 14

3.3 registry 组件指标

注册表,以下是从 Docker 发行版中提取的指标,查看指标方式:

<harbor_instance>:<metrics_port>/<metrics_path>?comp=registry.

1)registry_http_in_flight_requests

进行中的 HTTP 请求,处理程序

$ curl  http://192.168.2.22:9099/metrics?comp=registry |  grep registry_http_in_flight_requests
# HELP registry_http_in_flight_requests The in-flight HTTP requests
# TYPE registry_http_in_flight_requests gauge
registry_http_in_flight_requests{handler="base"} 0
registry_http_in_flight_requests{handler="blob"} 0
registry_http_in_flight_requests{handler="blob_upload"} 0
registry_http_in_flight_requests{handler="blob_upload_chunk"} 0
registry_http_in_flight_requests{handler="catalog"} 0
registry_http_in_flight_requests{handler="manifest"} 0
registry_http_in_flight_requests{handler="tags"} 0

2)registry_http_request_duration_seconds

​ HTTP 请求延迟(以秒为单位),处理程序、方法( ,,,, GET) POST,文件HEADPATCHPUT

$ curl  http://192.168.2.22:9099/metrics?comp=registry |  grep registry_http_request_duration_seconds

3)registry_http_request_size_bytes

HTTP 请求大小(以字节为单位)。

$ curl  http://192.168.2.22:9099/metrics?comp=registry |  grep registry_http_request_size_bytes

3.4 jobservice组件指标

以下是从 Harbor Jobservice 提取的指标,

可在<harbor_instance>:<metrics_port>/<metrics_path>?comp=jobservice.查看

1)harbor_jobservice_info

Jobservice的信息,

$ curl  http://192.168.2.22:9099/metrics?comp=jobservice | grep harbor_jobservice_info
# HELP harbor_jobservice_info the information of jobservice
# TYPE harbor_jobservice_info gauge
harbor_jobservice_info{node="f47de52e23b7:172.18.0.11",pool="35f1301b0e261d18fac7ba41",workers="10"} 1

2)harbor_jobservice_task_total

每个作业类型处理的任务数

$ curl  http://192.168.2.22:9099/metrics?comp=jobservice | grep harbor_jobservice_task_tota

3)harbor_jobservice_task_process_time_seconds

任务处理时间的持续时间,即任务从开始执行到任务结束用了多少时间。

$ curl  http://192.168.2.22:9099/metrics?comp=jobservice | grep harbor_jobservice_task_process_time_seconds

四、部署Prometheus Server(二进制)

4.1 创建安装目录

$ mkdir  /etc/prometheus 

4.2 下载安装包

$ wget https://github.com/prometheus/prometheus/releases/download/v2.36.2/prometheus-2.36.2.linux-amd64.tar.gz -c
$ tar zxvf  prometheus-2.36.2.linux-amd64.tar.gz  -C  /etc/prometheus
$ cp prometheus-2.36.2.linux-amd64/{prometheus,promtool}   /usr/local/bin/
$ prometheus  --version    #查看版本
prometheus, version 2.36.2 (branch: HEAD, revision: d7e7b8e04b5ecdc1dd153534ba376a622b72741b)
  build user:       [email protected]
  build date:       20220620-13:21:35
  go version:       go1.18.3
  platform:         linux/amd64

4.3 修改配置文件

在prometheus的配置文件中指定获取harbor采集的指标数据。

$ cp  prometheus-2.36.2.linux-amd64/prometheus.yml   /etc/prometheus/
$ cat <<EOF > /etc/prometheus/prometheus.yml
global:
  scrape_interval: 15s
  evaluation_interval: 15s
## 指定Alertmanagers地址
alerting:
  alertmanagers:
  - static_configs:
    - targets: ["192.168.2.10:9093"]  #填写Alertmanagers地址  
## 配置告警规则文件
rule_files:   #指定告警规则
  - /etc/prometheus/rules.yml

scrape_configs:
  - job_name: "prometheus"
    static_configs:
      - targets: ["localhost:9090"]
  - job_name: 'node-exporter'
    static_configs:
    - targets:
      - '192.168.2.22:9100'
  - job_name: "harbor-exporter"
    scrape_interval: 20s
    static_configs:
      - targets: ['192.168.2.22:9099']
  - job_name: 'harbor-core'
    params:
      comp: ['core']
    static_configs:
     - targets: ['192.168.2.22:9099']
  - job_name: 'harbor-registry'
    params:
      comp: ['registry']
    static_configs:
    - targets: ['192.168.2.22:9099']
  - job_name: 'harbor-jobservice'
    params:
      comp: ['jobservice']
    static_configs:
    - targets: ['192.168.2.22:9099']
EOF   

4.4 语法检查

检测配置文件的语法是否正确!

$ promtool check config  /etc/prometheus/prometheus.yml
Checking /etc/prometheus/prometheus.yml
 SUCCESS: /etc/prometheus/prometheus.yml is valid prometheus config file syntax
 
 Checking /etc/prometheus/rules.yml
  SUCCESS: 6 rules found

4.5 创建服务启动文件

$ cat <<EOF >  /usr/lib/systemd/system/prometheus.service
[Unit]
Description=Prometheus Service
Documentation=https://prometheus.io/docs/introduction/overview/
wants=network-online.target
After=network-online.target

[Service]
Type=simple
User=root
Group=root
ExecStart=/usr/local/bin/prometheus  --config.file=/etc/prometheus/prometheus.yml

[Install]
WantedBy=multi-user.target
EOF

4.6 启动服务

$ systemctl daemon-reload
$ systemctl enable --now prometheus.service
$ systemctl status prometheus.service

4.7 浏览器访问Prometheus UI

在浏览器地址栏输入主机IP:9090访问Prometheus UI 管理界面。

五、部署node-exporter

node-exporter服务可采集主机的cpu内存磁盘等资源指标。

5.1 下载安装包

$ wget https://github.com/prometheus/node_exporter/releases/download/v1.2.2/node_exporter-1.2.2.linux-amd64.tar.gz
$ tar zxvf node_exporter-1.2.2.linux-amd64.tar.gz
$ cp node_exporter-1.2.2.linux-amd64/node_exporter   /usr/local/bin/
$ node_exporter  --version
node_exporter, version 1.2.2 (branch: HEAD, revision: 26645363b486e12be40af7ce4fc91e731a33104e)
  build user:       [email protected]
  build date:       20210806-13:44:18
  go version:       go1.16.7
  platform:         linux/amd64

5.2 创建服务启动文件

$ cat <<EOF >  /usr/lib/systemd/system/node-exporter.service
[Unit]
Description=Prometheus Node Exporter
After=network.target

[Service]
ExecStart=/usr/local/bin/node_exporter
#User=prometheus

[Install]
WantedBy=multi-user.target
EOF

5.3 启动服务

$ systemctl daemon-reload
$ systemctl enable --now node-exporter.service
$ systemctl status node-exporter.service
$ ss  -ntulp |  grep node_exporter
tcp    LISTEN     0   128   :::9100    :::*    users:(("node_exporter",pid=36218,fd=3)

5.4 查看node指标

通过curl获取node-exporter服务采集到的监控数据。

$ curl  http://localhost:9100/metrics

六、Grafana部署与仪表盘设计

二进制部署Grafana v8.4.4服务。

6.1 下载安装包

$ wget https://dl.grafana.com/enterprise/release/grafana-enterprise-8.4.4.linux-amd64.tar.gz  -c 
$ tar zxvf grafana-enterprise-8.4.4.linux-amd64.tar.gz  -C  /etc/
$ mv  /etc/grafana-8.4.4   /etc/grafana
$ cp -a  /etc/grafana/bin/{grafana-cli,grafana-server}  /usr/local/bin/
#安装依赖包
$ yum install -y  fontpackages-filesystem.noarch libXfont libfontenc lyx-fonts.noarch  xorg-x11-font-utils

6.2 安装插件

  • 安装grafana时钟插件
$ grafana-cli plugins install grafana-clock-panel
  • 安装Zabbix插件
$ grafana-cli plugins install alexanderzobnin-zabbix-app
  • 安装服务器端图像渲染组件
$ yum install -y fontconfig freetype* urw-fonts

6.3 创建服务启动文件

$ cat <<EOF >/usr/lib/systemd/system/grafana.service
[Service]
Type=notify
ExecStart=/usr/local/bin/grafana-server -homepath /etc/grafana
Restart=on-failure

[Install]
WantedBy=multi-user.target
EOF

-homepath:指定grafana的工作目录

6.4 启动grafana服务

$ systemctl daemon-reload
$ systemctl enable --now grafana.service
$ systemctl status grafana.service
$ ss  -ntulp |  grep grafana-server
tcp    LISTEN     0   128    :::3000   :::*   users:(("grafana-server",pid=120140,fd=9)) 

6.5 配置数据源

在浏览器地址栏输入主机IP和grafana服务端口访问Grafana UI界面后,添加Prometheus数据源。

默认用户密码:admin/admin

6.6 导入json模板

一旦您配置了Prometheus服务器以收集您的 Harbor 指标,您就可以使用 Grafana来可视化您的数据。Harbor 存储库中提供了一个 示例 Grafana 仪表板,可帮助您开始可视化 Harbor 指标。

Harbor官方提供了一个grafana的json文件模板。下载:

https://github.com/goharbor/harbor/blob/main/contrib/grafana-dashborad/metrics-example.json

七、部署AlertManager服务(扩展)

Alertmanager是一个独立的告警模块,接收Prometheus等客户端发来的警报,之后通过分组、删除重复等处理,并将它们通过路由发送给正确的接收器;

7.1 下载安装包

$ wget https://github.com/prometheus/alertmanager/releases/download/v0.23.0/alertmanager-0.23.0.linux-amd64.tar.gz
$ tar zxvf alertmanager-0.23.0.linux-amd64.tar.gz
$ cp  alertmanager-0.23.0.linux-amd64/{alertmanager,amtool}   /usr/local/bin/

7.2 修改配置文件

$ mkdir /etc/alertmanager
$ cat /etc/alertmanager/alertmanager.yml
global:
  resolve_timeout: 5m

route:
  group_by: ['alertname']
  group_wait: 10s
  group_interval: 10s
  repeat_interval: 1h
  receiver: 'web.hook'
receivers:
- name: 'web.hook'
  webhook_configs:
  - url: 'http://127.0.0.1:5001/'
inhibit_rules:
  - source_match:
      severity: 'critical'
    target_match:
      severity: 'warning'
    equal: ['alertname', 'dev', 'instance']

7.3 创建服务启动文件

$ cat <<EOF >/usr/lib/systemd/system/alertmanager.service
[Unit]
Description=alertmanager
fter=network.target

[Service]
ExecStart=/usr/local/bin/alertmanager --config.file=/etc/alertmanager/alertmanager.yml
ExecReload=/bin/kill -HUP $MAINPID
KillMode=process
Restart=on-failure

[Install]
WantedBy=multi-user.target
EOF

7.4 启动服务

$ systemctl daemon-reload
$ systemctl enable --now alertmanager.service
$ systemctl status alertmanager.service
$ ss  -ntulp |  grep alertmanager

7.5 配置告警规则

前面在Prometheus server的配置文件中中指定了告警规则的文件为/etc/prometheus/rules.yml

$ cat /etc/prometheus/rules.yml
groups:
  - name: Warning
    rules:
      - alert: NodeMemoryUsage
        expr: 100 - (node_memory_MemFree_bytes + node_memory_Cached_bytes + node_memory_Buffers_bytes) / node_memory_MemTotal_bytes*100 > 80
        for: 1m
        labels:
          status: Warning
        annotations:
          summary: "{{$labels.instance}}: 内存使用率过高"
          description: "{{$labels.instance}}: 内存使用率大于 80% (当前值: {{ $value }}"

      - alert: NodeCpuUsage
        expr: (1-((sum(increase(node_cpu_seconds_total{mode="idle"}[1m])) by (instance)) / (sum(increase(node_cpu_seconds_total[1m])) by (instance)))) * 100 > 70
        for: 1m
        labels:
          status: Warning
        annotations:
          summary: "{{$labels.instance}}: CPU使用率过高"
          description: "{{$labels.instance}}: CPU使用率大于 70% (当前值: {{ $value }}"

      - alert: NodeDiskUsage
        expr: 100 - node_filesystem_free_bytes{fstype=~"xfs|ext4"} / node_filesystem_size_bytes{fstype=~"xfs|ext4"} * 100 > 80
        for: 1m
        labels:
          status: Warning
        annotations:
          summary: "{{$labels.instance}}: 分区使用率过高"
          description: "{{$labels.instance}}: 分区使用大于 80% (当前值: {{ $value }}"

      - alert: Node-UP
        expr: up{job='node-exporter'} == 0
        for: 1m
        labels:
          status: Warning
        annotations:
          summary: "{{$labels.instance}}: 服务宕机"
          description: "{{$labels.instance}}: 服务中断超过1分钟"

      - alert: TCP
        expr: node_netstat_Tcp_CurrEstab > 1000
        for: 1m
        labels:
          status: Warning
        annotations:
          summary: "{{$labels.instance}}: TCP连接过高"
          description: "{{$labels.instance}}: 连接大于1000 (当前值: {{$value}})"

      - alert: IO
        expr: 100 - (avg(irate(node_disk_io_time_seconds_total[1m])) by(instance)* 100) < 60
        for: 1m
        labels:
          status: Warning
        annotations:
          summary: "{{$labels.instance}}: 流入磁盘IO使用率过高"
          description: "{{$labels.instance}}:流入磁盘IO大于60%  (当前值:{{$value}})"
原网站

版权声明
本文为[李大白]所创,转载请带上原文链接,感谢
https://mdnice.com/writing/c948125c859843efb3065ccff0cbe422